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Parabolic-hyperbolic systems



Parabolic-hyperbolic systems

Equation we are interested in:
A,B ∈Mn(R), B =

(
0 0
0 D

)
with D + D> > 0

∂ty(t, x) + A∂xy(t, x)− B∂xxy(t, x) = 0, (t, x) ∈ [0,+∞)× T

Question
Are these systems observable (equivalently: null-controllable) in ω ⊂ T?

|y(T , ·)|L2(T)
?
≤ C |y |L2([0,T ]×ω)
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Fourier components, well-posedness

Fourier components
If y(t, x) =

∑
yn(t)e

inx

∂tyn(t) + n2
(
B +

i

n
A

)
yn(t) = 0

Well-posedness
λnk eigenvalues of B + i

nA. Perturbation of B: λnk → λk ∈ Sp(B)

• If λk > 0: well-posed

• If λk = 0, λnk ∼ iµk/n: need µk ∈ R (OK if A symmetric)

Transport-like solutions
If λnk ∼ iµk/n, and ynk is an associated eigenvector

y(t, x) =
∑
n

ane
inx−n2λnk tynk '

∑
n

ane
in(x−µk t)yk

Not observable in small time.
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Lack of small-time observability
of the transport equation:
Kafka’s proof



Transport equation’s lack of observability: Kafka’s proof

• Equation (∂t + ∂x)y(t, x) = 0, solutions: y(t, x) =
∑

n>0 ane
in(x−t)

• Associated polynomial: ỹ(z) =
∑

anz
n (imagine z = e i(x−t))

• LHS of the observability inequality:

|y(T , ·)|2L2(T) =

∫
T

∣∣∣∑ ane
in(x−T )

∣∣∣2 dx = 2π
∑
|an|2 ≥ C |ỹ |2L2(D(0,1))

• RHS of the observability inequality:

|y |L2([0,T ]×ω) ≤ C sup
0<t<T

|y(t, ·)|L∞(ω) ≤ C sup
0<t<T

|ỹ |L∞(e−itω) ≤ C |ỹ |L∞(ωT )

Conclusion
For every complex polynomial ỹ :

|ỹ |L2(D(0,1)) ≤ C |ỹ |L∞(ωT )

Does not hold if ωT is not the
whole unit circle.

ω

ωT

D(0, 1)
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To the parabolic-hyperbolic
systems



Parabolic hyperbolic systems as a perturbation of transport
equation

All the answers in: Kato, Perturbation Theory for Linear Operators.

• Eigenvalues of B + i
nA: λnk = iµk/n + ρk(n)/n

2 with ρk(z) = O(1)
• (Generalized) eigenvectors: ynk = yk(n) with yk(z) = yk + o(1)

• (Possible branch point at ∞)

• Particular solution:

y(t, x) =
∑

ane
in(x−µk t)e−tρk (n)yk(n)︸ ︷︷ ︸

error term
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Managing the error terms

Theorem
Let z 7→ γ(z) be (vector-valued) holomorphic and bounded for |z | > R.
The Taylor series Kγ(z) =

∑
γ(n)zn can be extended to a holomorphic

function on C \ [1,+∞).

Theorem
Let z 7→ γ(z) be vector valued, holomorphic and bounded for |z | > R.
Let U be a bounded open subset of C that is star-shaped with respect to
0 and K ⊂⊂ U. Then, for every polynomials

∑
anz

n:∣∣∣∑ γ(n)anz
n
∣∣∣
L∞(K)

≤ C (K ,V , γ)
∣∣∣∑ anz

n
∣∣∣
L∞(U)

.

Proof.
Cauchy’s integral formula + previous theorem.
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Managing the error terms

Theorem ∣∣∣∑ γ(n)anz
n
∣∣∣
L∞(K)

≤ C (K ,V , γ)
∣∣∣∑ anz

n
∣∣∣
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• Solution: y(t, x) =
∑

ane
in(x−µk t)γ(n) with γ(z) = e−tρk (z)yk(z)

• RHS: previous theorem: |y(t, ·)|L∞(ω) ≤ C |ỹ |L∞(U)

• LHS: error term does not decay too fast: |y(T , ·)|L2(T) ≥ C |ỹ |L2(D(0,1−ε))

Conclusion
For every complex polynomial ỹ :

|ỹ |L2(D(0,1−ε)) ≤ C |ỹ |L∞(U)

Does not hold if ωT is not the
whole unit circle.

ω

ωT

U

D(0, 1− ε)
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What we (don’t) know



Open problems

We don’t know

• Unique continuation ?

• Controllable in large time ?

• Higher dimensions ?

• Non-constant coefficients ?

We know
(Positive) controllability results in large time for systems of dimensions 2
(work by Kevin Le Balc’h).

That’s all folks!
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