Parabolic hyperbolic systems: lack of null-controllability in small time

Armand Koenig XIV^{ième} colloque Franco-Roumain de mathématiques appliquées 28 August 2018

Université Côte d'Azur

Parabolic-hyperbolic systems

Equation we are interested in: (0,0) it D

 $A, B \in \mathcal{M}_n(\mathbb{R}), \ B = \left(\begin{smallmatrix} 0 & 0 \\ 0 & D \end{smallmatrix} \right) \text{ with } D + D^\top > 0$

 $\partial_t y(t,x) + A \partial_x y(t,x) - B \partial_{xx} y(t,x) = 0, \quad (t,x) \in [0,+\infty) \times \mathbb{T}$

Equation we are interested in: $A, B \in \mathcal{M}_n(\mathbb{R}), B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}$ with $D + D^\top > 0$

$$\partial_t y(t,x) + A \partial_x y(t,x) - B \partial_{xx} y(t,x) = 0, \quad (t,x) \in [0,+\infty) \times \mathbb{T}$$

Question

Are these systems observable (equivalently: null-controllable) in $\omega \subset \mathbb{T}$?

$$|y(T,\cdot)|_{L^2(\mathbb{T})} \stackrel{?}{\leq} C|y|_{L^2([0,T]\times\omega)}$$

Fourier components, well-posedness

Fourier components If $y(t, x) = \sum y_n(t)e^{inx}$

$$\partial_t y_n(t) + n^2 \left(B + \frac{i}{n}A\right) y_n(t) = 0$$

Fourier components, well-posedness

Fourier components If $y(t, x) = \sum y_n(t)e^{inx}$

$$\partial_t y_n(t) + n^2 \left(B + \frac{i}{n} A \right) y_n(t) = 0$$

Well-posedness

 λ_{nk} eigenvalues of $B + \frac{i}{n}A$. Perturbation of $B: \lambda_{nk} \to \lambda_k \in Sp(B)$

- If $\lambda_k > 0$: well-posed
- If $\lambda_k = 0$, $\lambda_{nk} \sim i\mu_k/n$: need $\mu_k \in \mathbb{R}$ (OK if A symmetric)

Fourier components, well-posedness

Fourier components If $y(t, x) = \sum y_n(t)e^{inx}$

$$\partial_t y_n(t) + n^2 \left(B + \frac{i}{n}A\right) y_n(t) = 0$$

Well-posedness

 λ_{nk} eigenvalues of $B + \frac{i}{n}A$. Perturbation of $B: \lambda_{nk} \to \lambda_k \in Sp(B)$

- If $\lambda_k > 0$: well-posed
- If $\lambda_k = 0$, $\lambda_{nk} \sim i\mu_k/n$: need $\mu_k \in \mathbb{R}$ (OK if A symmetric)

Transport-like solutions

If $\lambda_{nk} \sim i\mu_k/n$, and y_{nk} is an associated eigenvector

$$y(t,x) = \sum_{n} a_{n} e^{inx - n^{2}\lambda_{nk}t} y_{nk} \simeq \sum_{n} a_{n} e^{in(x - \mu_{k}t)} y_{k}$$

Not observable in small time.

Lack of small-time observability of the transport equation: Kafka's proof

- Equation $(\partial_t + \partial_x)y(t, x) = 0$, solutions: $y(t, x) = \sum_{n>0} a_n e^{in(x-t)}$
- Associated polynomial: $\tilde{y}(z) = \sum a_n z^n$ (imagine $z = e^{i(x-t)}$)

- Equation $(\partial_t + \partial_x)y(t, x) = 0$, solutions: $y(t, x) = \sum_{n>0} a_n e^{in(x-t)}$
- Associated polynomial: $\tilde{y}(z) = \sum a_n z^n$ (imagine $z = e^{i(x-t)}$)
- LHS of the observability inequality:

$$|y(T, \cdot)|^{2}_{L^{2}(\mathbb{T})} = \int_{\mathbb{T}} \left| \sum a_{n} e^{in(x-T)} \right|^{2} \, \mathrm{d}x = 2\pi \sum |a_{n}|^{2} \ge C |\tilde{y}|^{2}_{L^{2}(D(0,1))}$$

- Equation $(\partial_t + \partial_x)y(t, x) = 0$, solutions: $y(t, x) = \sum_{n>0} a_n e^{in(x-t)}$
- Associated polynomial: $\tilde{y}(z) = \sum a_n z^n$ (imagine $z = e^{i(x-t)}$)
- LHS of the observability inequality:

$$|y(T, \cdot)|^{2}_{L^{2}(\mathbb{T})} = \int_{\mathbb{T}} \left| \sum a_{n} e^{in(x-T)} \right|^{2} \, \mathrm{d}x = 2\pi \sum |a_{n}|^{2} \ge C |\tilde{y}|^{2}_{L^{2}(D(0,1))}$$

• RHS of the observability inequality:

$$|y|_{L^{2}([0,T]\times\omega)} \leq C \sup_{0 < t < T} |y(t,\cdot)|_{L^{\infty}(\omega)} \leq C \sup_{0 < t < T} |\tilde{y}|_{L^{\infty}(e^{-it}\omega)} \leq C |\tilde{y}|_{L^{\infty}(\omega_{T})}$$

- Equation $(\partial_t + \partial_x)y(t, x) = 0$, solutions: $y(t, x) = \sum_{n>0} a_n e^{in(x-t)}$
- Associated polynomial: $\tilde{y}(z) = \sum a_n z^n$ (imagine $z = e^{i(x-t)}$)
- LHS of the observability inequality:

$$|y(T, \cdot)|^{2}_{L^{2}(\mathbb{T})} = \int_{\mathbb{T}} \left| \sum a_{n} e^{in(x-T)} \right|^{2} \, \mathrm{d}x = 2\pi \sum |a_{n}|^{2} \ge C |\tilde{y}|^{2}_{L^{2}(D(0,1))}$$

• RHS of the observability inequality:

$$|y|_{L^{2}([0,T]\times\omega)} \leq C \sup_{0 < t < T} |y(t,\cdot)|_{L^{\infty}(\omega)} \leq C \sup_{0 < t < T} |\tilde{y}|_{L^{\infty}(e^{-it}\omega)} \leq C |\tilde{y}|_{L^{\infty}(\omega_{T})}$$

Conclusion For every complex polynomial \tilde{y} :

 $|\tilde{y}|_{L^2(D(0,1))} \leq C |\tilde{y}|_{L^\infty(\omega_T)}$

Does not hold if $\overline{\omega_T}$ is not the whole unit circle.

To the parabolic-hyperbolic systems

All the answers in: Kato, Perturbation Theory for Linear Operators.

- Eigenvalues of $B + \frac{i}{n}A$: $\lambda_{nk} = i\mu_k/n + \rho_k(n)/n^2$ with $\rho_k(z) = O(1)$
- (Generalized) eigenvectors: $y_{nk} = y_k(n)$ with $y_k(z) = y_k + o(1)$
- (Possible branch point at ∞)
- Particular solution:

$$y(t,x) = \sum a_n e^{in(x-\mu_k t)} \underbrace{e^{-t\rho_k(n)}y_k(n)}_{\text{error term}}$$

Theorem

Let $z \mapsto \gamma(z)$ be (vector-valued) holomorphic and bounded for |z| > R. The Taylor series $K_{\gamma}(z) = \sum \gamma(n)z^n$ can be extended to a holomorphic function on $\mathbb{C} \setminus [1, +\infty)$.

Theorem

Let $z \mapsto \gamma(z)$ be (vector-valued) holomorphic and bounded for |z| > R. The Taylor series $K_{\gamma}(z) = \sum \gamma(n)z^n$ can be extended to a holomorphic function on $\mathbb{C} \setminus [1, +\infty)$.

Theorem

Let $z \mapsto \gamma(z)$ be vector valued, holomorphic and bounded for |z| > R. Let U be a bounded open subset of \mathbb{C} that is star-shaped with respect to 0 and $K \subset U$. Then, for every polynomials $\sum a_n z^n$:

$$\left|\sum \gamma(n)a_n z^n\right|_{L^{\infty}(K)} \leq C(K, V, \gamma) \left|\sum a_n z^n\right|_{L^{\infty}(U)}$$

Proof. Cauchy's integral formula + previous theorem.

Managing the error terms

Theorem

$$\left|\sum \gamma(n)a_n z^n\right|_{L^{\infty}(K)} \leq C(K, V, \gamma) \left|\sum a_n z^n\right|_{L^{\infty}(U)}$$

- Solution: $y(t,x) = \sum a_n e^{in(x-\mu_k t)} \gamma(n)$ with $\gamma(z) = e^{-t\rho_k(z)} y_k(z)$
- RHS: previous theorem: $|y(t, \cdot)|_{L^{\infty}(\omega)} \leq C |\tilde{y}|_{L^{\infty}(U)}$
- LHS: error term does not decay too fast: $|y(T, \cdot)|_{L^2(\mathbb{T})} \ge C|\tilde{y}|_{L^2(D(0, 1-\epsilon))}$

Managing the error terms

Theorem

$$\left|\sum \gamma(n)a_n z^n\right|_{L^{\infty}(K)} \leq C(K, V, \gamma) \left|\sum a_n z^n\right|_{L^{\infty}(U)}$$

- Solution: $y(t,x) = \sum a_n e^{in(x-\mu_k t)} \gamma(n)$ with $\gamma(z) = e^{-t\rho_k(z)} y_k(z)$
- RHS: previous theorem: $|y(t, \cdot)|_{L^{\infty}(\omega)} \leq C |\tilde{y}|_{L^{\infty}(U)}$
- LHS: error term does not decay too fast: $|y(T, \cdot)|_{L^2(\mathbb{T})} \ge C|\tilde{y}|_{L^2(D(0, 1-\epsilon))}$

Conclusion

For every complex polynomial \tilde{y} :

 $|\tilde{y}|_{L^2(D(0,1-\epsilon))} \leq C|\tilde{y}|_{L^\infty(U)}$

Does not hold if $\overline{\omega_T}$ is not the whole unit circle.

What we (don't) know

We don't know

- Unique continuation ?
- Controllable in large time ?
- Higher dimensions ?
- Non-constant coefficients ?

We don't know

- Unique continuation ?
- Controllable in large time ?
- Higher dimensions ?
- Non-constant coefficients ?

We know

(Positive) controllability results in large time for systems of dimensions 2 (work by Kevin Le Balc'h).

We don't know

- Unique continuation ?
- Controllable in large time ?
- Higher dimensions ?
- Non-constant coefficients ?

We know

(Positive) controllability results in large time for systems of dimensions 2 (work by Kevin Le Balc'h).

That's all folks!