Parabolic hyperbolic systems: lack of null-controllability in small time

Armand Koenig
XIVième colloque Franco-Roumain de mathématiques appliquées
28 August 2018
Université Côte d'Azur

Parabolic-hyperbolic systems

Parabolic-hyperbolic systems

Equation we are interested in:
$A, B \in \mathcal{M}_{n}(\mathbb{R}), B=\left(\begin{array}{ll}0 & 0 \\ 0 & D\end{array}\right)$ with $D+D^{\top}>0$

$$
\partial_{t} y(t, x)+A \partial_{x} y(t, x)-B \partial_{x x} y(t, x)=0, \quad(t, x) \in[0,+\infty) \times \mathbb{T}
$$

Parabolic-hyperbolic systems

Equation we are interested in:
$A, B \in \mathcal{M}_{n}(\mathbb{R}), B=\left(\begin{array}{ll}0 & 0 \\ 0 & D\end{array}\right)$ with $D+D^{\top}>0$

$$
\partial_{t} y(t, x)+A \partial_{x} y(t, x)-B \partial_{x x} y(t, x)=0, \quad(t, x) \in[0,+\infty) \times \mathbb{T}
$$

Question

Are these systems observable (equivalently: null-controllable) in $\omega \subset \mathbb{T}$?

$$
|y(T, \cdot)|_{L^{2}(\mathbb{T})} \stackrel{?}{\leq} C|y|_{L^{2}([0, T] \times \omega)}
$$

Fourier components, well-posedness

Fourier components
If $y(t, x)=\sum y_{n}(t) e^{i n x}$

$$
\partial_{t} y_{n}(t)+n^{2}\left(B+\frac{i}{n} A\right) y_{n}(t)=0
$$

Fourier components, well-posedness

Fourier components
If $y(t, x)=\sum y_{n}(t) e^{i n x}$

$$
\partial_{t} y_{n}(t)+n^{2}\left(B+\frac{i}{n} A\right) y_{n}(t)=0
$$

Well-posedness
$\lambda_{n k}$ eigenvalues of $B+\frac{i}{n} A$. Perturbation of $B: \lambda_{n k} \rightarrow \lambda_{k} \in \operatorname{Sp}(B)$

- If $\lambda_{k}>0$: well-posed
- If $\lambda_{k}=0, \lambda_{n k} \sim i \mu_{k} / n$: need $\mu_{k} \in \mathbb{R}$ (OK if A symmetric)

Fourier components, well-posedness

Fourier components

If $y(t, x)=\sum y_{n}(t) e^{i n x}$

$$
\partial_{t} y_{n}(t)+n^{2}\left(B+\frac{i}{n} A\right) y_{n}(t)=0
$$

Well-posedness
$\lambda_{n k}$ eigenvalues of $B+\frac{i}{n} A$. Perturbation of $B: \lambda_{n k} \rightarrow \lambda_{k} \in \operatorname{Sp}(B)$

- If $\lambda_{k}>0$: well-posed
- If $\lambda_{k}=0, \lambda_{n k} \sim i \mu_{k} / n$: need $\mu_{k} \in \mathbb{R}$ (OK if A symmetric)

Transport-like solutions

If $\lambda_{n k} \sim i \mu_{k} / n$, and $y_{n k}$ is an associated eigenvector

$$
y(t, x)=\sum_{n} a_{n} e^{i n x-n^{2} \lambda_{n k} t} y_{n k} \simeq \sum_{n} a_{n} e^{i n\left(x-\mu_{k} t\right)} y_{k}
$$

Not observable in small time.

Lack of small-time observability of the transport equation:
Kafka's proof

Transport equation's lack of observability: Kafka's proof

- Equation $\left(\partial_{t}+\partial_{x}\right) y(t, x)=0$, solutions: $y(t, x)=\sum_{n>0} a_{n} e^{i n(x-t)}$
- Associated polynomial: $\tilde{y}(z)=\sum a_{n} z^{n}$ (imagine $z=e^{i(x-t)}$)

Transport equation's lack of observability: Kafka's proof

- Equation $\left(\partial_{t}+\partial_{x}\right) y(t, x)=0$, solutions: $y(t, x)=\sum_{n>0} a_{n} e^{i n(x-t)}$
- Associated polynomial: $\tilde{y}(z)=\sum a_{n} z^{n}$ (imagine $z=e^{i(x-t)}$)
- LHS of the observability inequality:

$$
|y(T, \cdot)|_{L^{2}(\mathbb{T})}^{2}=\int_{\mathbb{T}}\left|\sum a_{n} e^{i n(x-T)}\right|^{2} \mathrm{~d} x=2 \pi \sum\left|a_{n}\right|^{2} \geq C \mid \tilde{y}_{L^{2}(D(0,1))}^{2}
$$

Transport equation's lack of observability: Kafka's proof

- Equation $\left(\partial_{t}+\partial_{x}\right) y(t, x)=0$, solutions: $y(t, x)=\sum_{n>0} a_{n} e^{i n(x-t)}$
- Associated polynomial: $\tilde{y}(z)=\sum a_{n} z^{n}$ (imagine $z=e^{i(x-t)}$)
- LHS of the observability inequality:

$$
|y(T, \cdot)|_{L^{2}(\mathbb{T})}^{2}=\int_{\mathbb{T}}\left|\sum a_{n} e^{i n(x-T)}\right|^{2} \mathrm{~d} x=2 \pi \sum\left|a_{n}\right|^{2} \geq C \mid \tilde{y}_{L^{2}(D(0,1))}^{2}
$$

- RHS of the observability inequality:

$$
|y|_{L^{2}([0, T] \times \omega)} \leq C \sup _{0<t<T}|y(t, \cdot)|_{L^{\infty}(\omega)} \leq C \sup _{0<t<T}|\tilde{y}|_{L^{\infty}\left(e^{-i t} \omega\right)} \leq C|\tilde{y}|_{L^{\infty}\left(\omega_{T}\right)}
$$

Transport equation's lack of observability: Kafka's proof

- Equation $\left(\partial_{t}+\partial_{x}\right) y(t, x)=0$, solutions: $y(t, x)=\sum_{n>0} a_{n} e^{i n(x-t)}$
- Associated polynomial: $\tilde{y}(z)=\sum a_{n} z^{n}$ (imagine $z=e^{i(x-t)}$)
- LHS of the observability inequality:

$$
|y(T, \cdot)|_{L^{2}(\mathbb{T})}^{2}=\int_{\mathbb{T}}\left|\sum a_{n} e^{i n(x-T)}\right|^{2} \mathrm{~d} x=2 \pi \sum\left|a_{n}\right|^{2} \geq C|\tilde{y}|_{L^{2}(D(0,1))}^{2}
$$

- RHS of the observability inequality:

$$
|y|_{L^{2}([0, T] \times \omega)} \leq C \sup _{0<t<T}|y(t, \cdot)|_{L^{\infty}(\omega)} \leq C \sup _{0<t<T}|\tilde{y}|_{L^{\infty}\left(e^{-i t} \omega\right)} \leq C|\tilde{y}|_{L^{\infty}\left(\omega_{T}\right)}
$$

Conclusion

For every complex polynomial \tilde{y} :

$$
|\tilde{y}|_{L^{2}(D(0,1))} \leq C|\tilde{y}|_{L^{\infty}\left(\omega_{T}\right)}
$$

Does not hold if $\overline{\omega_{T}}$ is not the whole unit circle.

To the parabolic-hyperbolic systems

Parabolic hyperbolic systems as a perturbation of transport equation

All the answers in: Kato, Perturbation Theory for Linear Operators.

- Eigenvalues of $B+\frac{i}{n} A: \lambda_{n k}=i \mu_{k} / n+\rho_{k}(n) / n^{2}$ with $\rho_{k}(z)=\mathcal{O}(1)$
- (Generalized) eigenvectors: $y_{n k}=y_{k}(n)$ with $y_{k}(z)=y_{k}+o(1)$
- (Possible branch point at ∞)
- Particular solution:

$$
y(t, x)=\sum a_{n} e^{i n\left(x-\mu_{k} t\right)} \underbrace{e^{-t \rho_{k}(n)} y_{k}(n)}_{\text {error term }}
$$

Managing the error terms

Theorem
Let $z \mapsto \gamma(z)$ be (vector-valued) holomorphic and bounded for $|z|>R$. The Taylor series $K_{\gamma}(z)=\sum \gamma(n) z^{n}$ can be extended to a holomorphic function on $\mathbb{C} \backslash[1,+\infty)$.

Managing the error terms

Theorem

Let $z \mapsto \gamma(z)$ be (vector-valued) holomorphic and bounded for $|z|>R$. The Taylor series $K_{\gamma}(z)=\sum \gamma(n) z^{n}$ can be extended to a holomorphic function on $\mathbb{C} \backslash[1,+\infty)$.

Theorem

Let $z \mapsto \gamma(z)$ be vector valued, holomorphic and bounded for $|z|>R$.
Let U be a bounded open subset of \mathbb{C} that is star-shaped with respect to 0 and $K \subset \subset U$. Then, for every polynomials $\sum a_{n} z^{n}$:

$$
\left|\sum \gamma(n) a_{n} z^{n}\right|_{L^{\infty}(K)} \leq C(K, V, \gamma)\left|\sum a_{n} z^{n}\right|_{L^{\infty}(U)}
$$

Proof.
Cauchy's integral formula + previous theorem.

Managing the error terms

Theorem

$$
\left|\sum \gamma(n) a_{n} z^{n}\right|_{L^{\infty}(K)} \leq C(K, V, \gamma)\left|\sum a_{n} z^{n}\right|_{L^{\infty}(U)}
$$

- Solution: $y(t, x)=\sum a_{n} e^{i n\left(x-\mu_{k} t\right)} \gamma(n)$ with $\gamma(z)=e^{-t \rho_{k}(z)} y_{k}(z)$
- RHS: previous theorem: $|y(t, \cdot)|_{L^{\infty}(\omega)} \leq C|\tilde{y}|_{L^{\infty}(U)}$
- LHS: error term does not decay too fast: $|y(T, \cdot)|_{L^{2}(\mathbb{T})} \geq C|\tilde{y}|_{L^{2}(D(0,1-\epsilon))}$

Managing the error terms

Theorem

$$
\left|\sum \gamma(n) a_{n} z^{n}\right|_{L^{\infty}(K)} \leq C(K, V, \gamma)\left|\sum a_{n} z^{n}\right|_{L^{\infty}(U)}
$$

- Solution: $y(t, x)=\sum a_{n} e^{i n\left(x-\mu_{k} t\right)} \gamma(n)$ with $\gamma(z)=e^{-t \rho_{k}(z)} y_{k}(z)$
- RHS: previous theorem: $|y(t, \cdot)|_{L^{\infty}(\omega)} \leq C|\tilde{y}|_{L^{\infty}(U)}$
- LHS: error term does not decay too fast: $|y(T, \cdot)|_{L^{2}(\mathbb{T})} \geq C|\tilde{y}|_{L^{2}(D(0,1-\epsilon))}$

Conclusion

For every complex polynomial \tilde{y} :

$$
|\tilde{y}|_{L^{2}(D(0,1-\epsilon))} \leq C|\tilde{y}|_{L^{\infty}(U)}
$$

Does not hold if $\bar{\omega}$ is not the whole unit circle.

What we (don't) know

Open problems

We don't know

- Unique continuation?
- Controllable in large time ?
- Higher dimensions ?
- Non-constant coefficients ?

Open problems

We don't know

- Unique continuation?
- Controllable in large time ?
- Higher dimensions ?
- Non-constant coefficients ?

We know

(Positive) controllability results in large time for systems of dimensions 2 (work by Kevin Le Balc'h).

Open problems

We don't know

- Unique continuation ?
- Controllable in large time ?
- Higher dimensions ?
- Non-constant coefficients ?

We know

(Positive) controllability results in large time for systems of dimensions 2 (work by Kevin Le Balc'h).
That's all folks!

