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The Problem of Controllability



Definition of the Controllability

Q domain of R", w an open subset of Qand T > 0.

Definition (Controllability of the heat equation on w in time T)
For every initial condition fy € L?(2), there exists a control

u € L?([0, T] x w) such that the solution f of:

of — Af =1,U, flaa =0, f(0)=fo

satisfies f(T) = 0.
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Theorem (Controllability of the heat equation (Lebeau & Robbiano

1995, Fursikov & Imanuvilov 1996))
Q a C? bounded domain of R", w a non empty open subset of Q, and

T > 0. The heat equation is null-controllable on w in time T.
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Spectral Inequality

Theorem (Spectral inequality, Lebeau & Robbiano 1995)
Q a C? bounded domain of R", w a non-empty open subset of Q.

¢k eigenfunction of —A, eigenvalue Ay.
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- Dissipation of the heat equation: fo = > arey
Ap>p

\emfoﬁzm) < efzm\foﬁzm)

- Dissipation > spectral inequality = controllability
- Only depends on the spectral inequality
- E.g. also works for ¢ + (—A)® (with a > 1/2)



Examples of parabolic PDEs with
little dissipation




Examples
- Fractional heat (9 + (=A)*)f = 1,u (@ <1/2)
Spectral inequality with /g, Dissipation with p®
- Grushin (9, — 8; — xX*97)f = 1.u
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Spectral inequality with y, Dissipation with /i
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X
- Kolmogorov: only in large time w X

- Fractional heat (e < 1/2): no
- Grushin: only in large time if w %

- Grushin: never null-controllable if w v

- Kolmogorov: never null-controllable if w X




Fractional Heat Equation (o < 1/2)

Q=R w={x] >€}, R(z) >0.
Non-null-controllability of 9; + z(—A)«

- Controllability < observability:
(0 +2(=A)*)g =0 = |9(T,")liz@) < Cl9li2(0,1xw)
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Fractional Heat Equation (o < 1/2)

Q=R w={x] >€}, R(z) >0.
Non-null-controllability of 9; + z(—A)«

- Controllability < observability:
(O +2(=A)*)g =0 = [9(T,)liz@@) < Clgli(o,mxw)
- go that concentrates near 0: go(x) = x(hDy — &)e—*72+ixé/h

g(t, x) = cpeie/h=x/2h / X (€)™ (E=M/2h—t2lg+&a /I g

R
- Saddle point method:
1
g(t,x) =0 <|Xooe‘“/h) x| > €
g(t,x) = plx€o/h—x"/2h—O(h~*) x| < 570
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Half Heat Equation

Observability inequality applied with f(t,y) = 3" a,e~"e:

Z‘aﬂ|2€72rﬁ < C/

J0,TIxw

Letz = e ™ and f(z) = 3 a2 W
[ rorae %
D(0,e~T) /

<2nC [ @ axa

Untrue thanks to Runge’s theorem (take f, — 1/z uniformly on
every compact of C\ e’R,) O

. 2
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Degenerate Parabolic Equations




Kolmogorov & Grushin

- Link Grushin/half-heat by looking at special solutions
f(t,X,y) = Z ane_‘ﬂ|te—\ﬂ\xz/2+my

- (Same idea for Kolmogorov/rotated fractional heat)



Kolmogorov & Grushin

- Link Grushin/half-heat by looking at special solutions
f(t,X,y) = Z ane_‘n|te—\ﬂ\xz/2+my

- (Same idea for Kolmogorov/rotated fractional heat)

- For Grushin: lack of small time null-controllability if {x =0} Z @

- Plus null-controllability as a consequence of a result by
Beauchard = accurate minimal time of null-controllability for
w={fi(y) < x < fo(y)}. With a = max(supf, ,supf;"), Tmin = @%/2.

w




Conclusion




Some open problems

- Results for half-heat limited to Q = T (no R)
- Results for Grushin and Kolmogorov limited to the potential x?
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That's all folks!
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