(Non) Null Controllability of the Fractional Heat Equation and of Related Equations

Armand Koenig Université Côte d'Azur 2018, september 20th

GE2MI conference on PDE's, Control Theory and Related Topics

The Problem of Controllability

Ω domain of \mathbb{R}^n , ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω **in time** *T*) For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \omega)$ such that the solution *f* of:

$$\partial_t f - \Delta f = \mathbf{1}_{\boldsymbol{\omega}} u, \quad f_{\mid \partial \Omega} = 0, \quad f(0) = f_0$$

satisfies f(T) = 0.

Ω domain of \mathbb{R}^n , ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω in time *T*) For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \omega)$ such that the solution *f* of:

$$\partial_t f - \Delta f = \mathbf{1}_{\boldsymbol{\omega}} u, \quad f_{\mid \partial \Omega} = 0, \quad f(0) = f_0$$

satisfies f(T) = 0.

Theorem (Controllability of the heat equation (Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996)) Ω a C^2 bounded domain of \mathbb{R}^n , ω a non empty open subset of Ω , and T > 0. The heat equation is null-controllable on ω in time T.

Theorem (Spectral inequality, Lebeau & Robbiano 1995) $\Omega \ a \ C^2 \ bounded \ domain \ of \ \mathbb{R}^n, \ \omega \ a \ non-empty \ open \ subset \ of \ \Omega.$ $\phi_k \ eigenfunction \ of \ -\Delta, \ eigenvalue \ \lambda_k.$

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

Theorem (Spectral inequality, Lebeau & Robbiano 1995) $\Omega \ a \ C^2$ bounded domain of \mathbb{R}^n , ω a non-empty open subset of Ω . ϕ_k eigenfunction of $-\Delta$, eigenvalue λ_k .

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

• Dissipation of the heat equation : $f_0 = \sum_{\lambda_k > \mu} a_k \phi_k$ $|e^{t\Delta} f_0|^2_{L^2(\Omega)} \le e^{-2\mu t} |f_0|^2_{L^2(\Omega)}$

Theorem (Spectral inequality, Lebeau & Robbiano 1995) $\Omega \ a \ C^2$ bounded domain of \mathbb{R}^n , ω a non-empty open subset of Ω . ϕ_k eigenfunction of $-\Delta$, eigenvalue λ_k .

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

- Dissipation of the heat equation : $f_0 = \sum_{\lambda_k > \mu} a_k \phi_k$ $|e^{t\Delta} f_0|^2_{L^2(\Omega)} \le e^{-2\mu t} |f_0|^2_{L^2(\Omega)}$
- \cdot Dissipation \gg spectral inequality \implies controllability
- Only depends on the spectral inequality

Theorem (Spectral inequality, Lebeau & Robbiano 1995) $\Omega \ a \ C^2$ bounded domain of \mathbb{R}^n , ω a non-empty open subset of Ω . ϕ_k eigenfunction of $-\Delta$, eigenvalue λ_k .

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

- Dissipation of the heat equation : $f_0 = \sum_{\lambda_k > \mu} a_k \phi_k$ $|e^{t\Delta} f_0|^2_{L^2(\Omega)} \le e^{-2\mu t} |f_0|^2_{L^2(\Omega)}$
- \cdot Dissipation \gg spectral inequality \implies controllability
- Only depends on the spectral inequality
- + E.g. also works for $\partial_t + (-\Delta)^{lpha}$ (with lpha > 1/2)

Examples of parabolic PDEs with little dissipation

Examples

Examples

- Fractional heat $(\partial_t + (-\Delta)^{\alpha})f = \mathbf{1}_{\omega}u$ $(\alpha \le 1/2)$ Spectral inequality with $\sqrt{\mu}$, Dissipation with μ^{α}
- Grushin $(\partial_t \partial_x^2 x^2 \partial_y^2)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with μ
- Kolmogorov $(\partial_t \partial_v^2 v^2 \partial_x)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with $\sqrt{\mu}$

Examples

Examples

- Fractional heat $(\partial_t + (-\Delta)^{\alpha})f = \mathbf{1}_{\omega}u$ $(\alpha \le 1/2)$ Spectral inequality with $\sqrt{\mu}$, Dissipation with μ^{α}
- Grushin $(\partial_t \partial_x^2 x^2 \partial_y^2)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with μ
- Kolmogorov $(\partial_t \partial_v^2 v^2 \partial_x)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with $\sqrt{\mu}$

Controllable ?

- Fractional heat ($\alpha \leq 1/2$): no
- \cdot Grushin: only in large time if ω
- \cdot Kolmogorov: only in large time $\,\omega$

Х

Examples

Examples

- Fractional heat $(\partial_t + (-\Delta)^{\alpha})f = \mathbf{1}_{\omega}u$ $(\alpha \le 1/2)$ Spectral inequality with $\sqrt{\mu}$, Dissipation with μ^{α}
- Grushin $(\partial_t \partial_x^2 x^2 \partial_y^2)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with μ
- Kolmogorov $(\partial_t \partial_v^2 v^2 \partial_x)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with $\sqrt{\mu}$

Controllable ?

- Fractional heat ($\alpha \leq 1/2$): no
- \cdot Grushin: only in large time if ω
- Kolmogorov: only in large time μ
- \cdot Grushin: never null-controllable if ω
- \cdot Kolmogorov: never null-controllable if ω

Х

Х

 $\Omega = \mathbb{R}, \, \boldsymbol{\omega} = \{ |\boldsymbol{x}| > \epsilon \}, \, \Re(\boldsymbol{z}) > 0.$

Non-null-controllability of $\partial_t + z(-\Delta)^{\alpha}$

• Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$

 $\Omega = \mathbb{R}, \, \boldsymbol{\omega} = \{ |\boldsymbol{x}| > \epsilon \}, \, \Re(\boldsymbol{z}) > 0.$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- g_0 that concentrates near 0: $g_0(x) = e^{-x^2/2h}$

 $\Omega = \mathbb{R}, \, \boldsymbol{\omega} = \{ |\boldsymbol{x}| > \epsilon \}, \, \Re(\boldsymbol{z}) > 0.$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- g_0 that concentrates near 0: $g_0(x) = e^{-x^2/2h + ix\xi_0/h}$

 $\Omega = \mathbb{R}, \, \boldsymbol{\omega} = \{ |\boldsymbol{x}| > \epsilon \}, \, \Re(\boldsymbol{z}) > 0.$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- g_0 that concentrates near 0: $g_0(x) = \chi(hD_x \xi_0)e^{-x^2/2h + ix\xi_0/h}$

 $\Omega = \mathbb{R}, \, \boldsymbol{\omega} = \{ |\boldsymbol{x}| > \epsilon \}, \, \Re(\boldsymbol{z}) > 0.$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- g_0 that concentrates near 0: $g_0(x) = \chi(hD_x \xi_0)e^{-x^2/2h + ix\xi_0/h}$

$$g(t,x) = c_h e^{ix\xi_0/h - x^2/2h} \int_{\mathbb{R}} \chi(\xi) e^{-(\xi - ix)^2/2h - t\bar{z}|\xi + \xi_0|^{2\alpha}/h^{2\alpha}} \mathrm{d}\xi$$

 $\Omega = \mathbb{R}, \, \boldsymbol{\omega} = \{ |\boldsymbol{x}| > \epsilon \}, \, \Re(\boldsymbol{z}) > 0.$

Non-null-controllability of $\partial_t + z(-\Delta)^{\alpha}$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- g_0 that concentrates near 0: $g_0(x) = \chi(hD_x \xi_0)e^{-x^2/2h + ix\xi_0/h}$

$$g(t,x) = c_h e^{ix\xi_0/h - x^2/2h} \int_{\mathbb{R}} \chi(\xi) e^{-(\xi - ix)^2/2h - t\overline{z}|\xi + \xi_0|^{2\alpha}/h^{2\alpha}} \mathrm{d}\xi$$

• Saddle point method:

$$g(t,x) = \mathcal{O}\left(\frac{1}{|x|^{\infty}}e^{-ct/h}\right) \qquad |x| > \epsilon$$
$$g(t,x) = e^{ix\xi_0/h - x^2/2h - \mathcal{O}(h^{-2\alpha})} \qquad |x| < \frac{\xi_0}{4}$$

Half Heat Equation

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \boldsymbol{\omega}} \left| \sum a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \boldsymbol{\omega}} \left| \sum a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Let
$$z = e^{-t+iy}$$
 and $f(z) = \sum a_n z^{n-1}$
$$\int_{D(0,e^{-T})} |f(z)|^2 d\lambda(z)$$
$$\leq 2\pi \sum |a_n|^2 e^{-2nT}$$
$$\leq 2\pi C \int_{\mathcal{D}} |f(z)|^2 d\lambda(z)$$

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \boldsymbol{\omega}} \left| \sum a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Let
$$z = e^{-t+iy}$$
 and $f(z) = \sum a_n z^{n-1}$
$$\int_{D(0,e^{-T})} |f(z)|^2 d\lambda(z)$$
$$\leq 2\pi \sum |a_n|^2 e^{-2nT}$$
$$\leq 2\pi C \int_{\mathcal{D}} |f(z)|^2 d\lambda(z)$$

$$\sum |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \boldsymbol{\omega}} \left| \sum a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Untrue thanks to Runge's theorem (take $f_k \longrightarrow 1/z$ uniformly on every compact of $C \setminus e^{i\theta} R_+$)

Degenerate Parabolic Equations

Kolmogorov & Grushin

• Link Grushin/half-heat by looking at special solutions

$$f(t, x, y) = \sum a_n e^{-|n|t} e^{-|n|x^2/2 + iny}$$

• (Same idea for Kolmogorov/rotated fractional heat)

Kolmogorov & Grushin

• Link Grushin/half-heat by looking at special solutions

$$f(t, x, y) = \sum a_n e^{-|n|t} e^{-|n|x^2/2 + iny}$$

- (Same idea for Kolmogorov/rotated fractional heat)
- For Grushin: lack of small time null-controllability if $\{x = 0\} \not\subset \overline{\omega}$
- Plus null-controllability as a consequence of a result by Beauchard \implies accurate minimal time of null-controllability for $\omega = \{f_1(y) < x < f_2(y)\}$. With $a = \max(\sup f_2^-, \sup f_1^+)$, $T_{\min} = a^2/2$.

Conclusion

- Results for half-heat limited to $\Omega=\mathbb{T}$ (no $\mathbb{R})$
- Results for Grushin and Kolmogorov limited to the potential x^2

- + Results for half-heat limited to $\Omega=\mathbb{T}$ (no $\mathbb{R})$
- Results for Grushin and Kolmogorov limited to the potential x^2
- Still ad-hoc methods for degenerate parabolic equations

- Results for half-heat limited to $\Omega=\mathbb{T}$ (no $\mathbb{R})$
- Results for Grushin and Kolmogorov limited to the potential x^2
- Still ad-hoc methods for degenerate parabolic equations

That's all folks!