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Parabolic-transport systems



Parabolic-transport systems

Equation we are interested in:
∂ty(t, x) + A∂xy(t, x)− B∂xxy(t, x) = f (t, x)1ω, (t, x) ∈ [0,+∞)× T

B =

(
0 0
0 D

)
, D+ D∗ definite-positive; A =

(
A′ A12
A21 A22

)
, A′ = A′∗.

Question
Are these systems null-controllable (equivalently: observable) in ω ⊂ T?

if u = 0, |y(T, ·)|L2(T) ≤ C|y|L2([0,T]×ω) ?
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The Theorem

Theorem (Beauchard-K-Le Balc’h 2019)
ω an open interval of T.

T∗ =
2π − length(ω)

minµ∈Sp(A′) |µ|

Then

1. the system is not null-controllable on ω in time T < T∗,
2. the system is null-controllable on ω in any time T > T∗.
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Parabolic frequencies, Hyperbolic
frequencies



Fourier components, well-posedness

Fourier components
If y(t, x) =

∑
yn(t)einx

∂tyn(t) + n2
(
B+

i
n
A
)
yn(t) = 0

Perturbation theory
λnk eigenvalues of B+ i

nA. Perturbation of B: λnk → λk ∈ Sp(B)

• If λk 6= 0, λnk ∼
n→+∞

λk: parabolic frequencies

• If λk = 0, λnk ∼
n→+∞

iµk/n: hyperbolic frequencies

• Well posed if all <(λk) > 0 and µk ∈ R

y(t, x) =
∑
n,k

ankeinx−n
2λnktynk

'
∑

parabolic frequencies

ankeinx−n
2λktyk +

∑
hyperbolic frequencies

ankein(x−µkt)yk
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Lack of null-controllability in
small time



Lack of null-controllability in small time

Transport-like solutions
If λnk ∼ iµk/n, and ynk is an associated eigenvector

y(t, x) =
∑
n
aneinx−n

2λnktynk '
∑
n
anein(x−µkt)yk

Not observable in time T <
2π − length(ω)

|µk|
.

Minimal time = minimal time for transport equation
In the case

∂tyh + A′∂xyh = fh1ω

Solutions = sum of solutions moving at speed µk ∈ Sp(A′).
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Null-controllability in large time



The control strategy

Decoupling the system and controlling

• Given fh , find fp that steers parabolic frequencies to 0 in time T

•
0 T ′ T<

• Given fp , find fh that steers hyperbolic frequencies to 0 in time T

• If both steps agree, OK (except a finite number of frequencies)
• Make steps agree by choosing fp smooth and using Fredholm’s
alternative

• First step: parabolic null-controllability problem in time T − T ′ > 0
• Second step: hyperbolic exact controllability problem in time T ′. Ok if
T ′ > T∗
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What is new in our work

Dealing with a system of arbitrary size

• Previous strategy: Lebeau-Zuazua (1998) for linear thermolasticity
systems (coupled wave-heat system)

• What we did: generalize to systems of arbitrary size

• Issue: eigenvalues and eigenvectors not nice as n→ +∞
• Solution: we don’t need either of these
• We only need total eigenprojections: sums of eigenprojections on
eigenvalues close to each other (Kato’s perturbation theory…)

− 1
2iπ

∮
Γ

(M− z)−1 dz = Projection on eigenspaces associated
with eigenvalues of M inside Γ
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What we (don’t) know



Open problems

We don’t know

• Unique continuation in small time ?
• Less controls than equations ? (partial results)
• Higher dimensions ?
• Non-constant coefficients ?

That’s all folks!
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