Null-controllability of parabolic-hyperbolic systems

Armand Koenig

2019, August 19

VIII Partial differential equations, optimal design and nmerics

Parabolic-transport systems

Equation we are interested in:

$$\partial_t y(t,x) + A \partial_x y(t,x) - B \partial_{xx} y(t,x) = f(t,x) \mathbf{1}_{\omega}, \quad (t,x) \in [0,+\infty) \times \mathbb{T}$$
$$B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}, \ D + D^* \text{ definite-positive;} \quad A = \begin{pmatrix} A' & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \ A' = A'^*.$$

Equation we are interested in:

$$\partial_t y(t,x) + A \partial_x y(t,x) - B \partial_{xx} y(t,x) = f(t,x) \mathbf{1}_{\omega}, \quad (t,x) \in [0,+\infty) \times \mathbb{T}$$
$$B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}, \ D + D^* \text{ definite-positive;} \quad A = \begin{pmatrix} A' & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \ A' = A'^*.$$

Question

Are these systems null-controllable (equivalently: observable) in $\omega \subset \mathbb{T}$?

if
$$u = 0$$
, $|y(T, \cdot)|_{L^2(\mathbb{T})} \le C|y|_{L^2([0,T] \times \omega)}$?

Theorem (Beauchard-K-Le Balc'h 2019) ω an open interval of \mathbb{T} .

$$T^* = rac{2\pi - ext{length}(\omega)}{\min_{\mu \in \mathsf{Sp}(\mathsf{A}')} |\mu|}$$

Then

- 1. the system is not null-controllable on ω in time T < T*,
- 2. the system is null-controllable on ω in any time $T > T^*$.

Parabolic frequencies, Hyperbolic frequencies

Fourier components, well-posedness

Fourier components If $y(t,x) = \sum y_n(t)e^{inx}$

$$\partial_t y_n(t) + n^2 \left(B + \frac{i}{n} A \right) y_n(t) = 0$$

Fourier components, well-posedness

Fourier components If $y(t,x) = \sum y_n(t)e^{inx}$

$$\partial_t y_n(t) + n^2 \left(B + \frac{i}{n} A \right) y_n(t) = 0$$

Perturbation theory

 λ_{nk} eigenvalues of $B + \frac{i}{n}A$. Perturbation of $B: \lambda_{nk} \to \lambda_k \in Sp(B)$

- If $\lambda_k \neq 0$, $\lambda_{nk} \underset{n \to +\infty}{\sim} \lambda_k$: parabolic frequencies
- If $\lambda_k =$ 0, $\lambda_{nk} \mathop{\sim}\limits_{n \to +\infty} i \mu_k / n$: hyperbolic frequencies

Fourier components, well-posedness

Fourier components If $y(t,x) = \sum y_n(t)e^{inx}$

$$\partial_t y_n(t) + n^2 \left(B + \frac{i}{n} A \right) y_n(t) = 0$$

Perturbation theory

 λ_{nk} eigenvalues of $B + \frac{i}{n}A$. Perturbation of $B: \lambda_{nk} \to \lambda_k \in Sp(B)$

- If $\lambda_k \neq 0$, $\lambda_{nk} \underset{n \to +\infty}{\sim} \lambda_k$: parabolic frequencies
- If $\lambda_k =$ 0, $\lambda_{nk} \underset{n \to +\infty}{\sim} i \mu_k / n$: hyperbolic frequencies
- Well posed if all $\Re(\lambda_k) > 0$ and $\mu_k \in \mathbb{R}$

$$y(t, x) = \sum_{n,k} a_{nk} e^{inx - n^2 \lambda_{nk} t} y_{nk}$$
$$\simeq \sum_{k} a_{nk} e^{inx - n^2 \lambda_k t} y_k + \sum_{k} a_{nk} e^{in(x - \mu_k t)} y_k$$
parabolic frequencies hyperbolic frequencies

Lack of null-controllability in small time

Transport-like solutions If $\lambda_{nk} \sim i\mu_k/n$, and y_{nk} is an associated eigenvector

$$y(t,x) = \sum_{n} a_n e^{inx - n^2 \lambda_{nk} t} y_{nk} \simeq \sum_{n} a_n e^{in(x - \mu_k t)} y_k$$

Not observable in time $T < \frac{2\pi - \text{length}(\omega)}{|\mu_k|}$.

 $\begin{array}{l} \mbox{Minimal time} = \mbox{minimal time for transport equation} \\ \mbox{In the case} \end{array}$

$$\partial_t y_h + A' \partial_x y_h = f_h \mathbf{1}_\omega$$

Solutions = sum of solutions moving at speed $\mu_k \in Sp(A')$.

Null-controllability in large time

Decoupling the system and controlling

Decoupling the system and controlling

Decoupling the system and controlling

• Given f_h , find f_p that steers parabolic frequencies to 0 in time T

• Given f_p , find f_h that steers hyperbolic frequencies to 0 in time T

Decoupling the system and controlling

• Given f_h , find f_p that steers parabolic frequencies to 0 in time T

- Given f_p , find f_h that steers hyperbolic frequencies to 0 in time T
- If both steps agree, OK (except a finite number of frequencies)
- Make steps agree by choosing f_p smooth and using Fredholm's alternative

Decoupling the system and controlling

 \cdot Given f_h , find f_p that steers parabolic frequencies to 0 in time T

- Given f_p , find f_h that steers hyperbolic frequencies to 0 in time T
- If both steps agree, OK (except a finite number of frequencies)
- Make steps agree by choosing $f_{\!\textit{p}}$ smooth and using Fredholm's alternative
- First step: parabolic null-controllability problem in time T T' > 0
- Second step: hyperbolic exact controllability problem in time $T^\prime.$ Ok if $T^\prime>T^*$

Dealing with a system of arbitrary size

- Previous strategy: Lebeau-Zuazua (1998) for linear thermolasticity systems (coupled wave-heat system)
- $\cdot\,$ What we did: generalize to systems of arbitrary size

Dealing with a system of arbitrary size

- Previous strategy: Lebeau-Zuazua (1998) for linear thermolasticity systems (coupled wave-heat system)
- $\cdot\,$ What we did: generalize to systems of arbitrary size
- Issue: eigenvalues and eigenvectors not nice as $n \to +\infty$
- Solution: we don't need either of these
- We only need *total eigenprojections*: sums of eigenprojections on eigenvalues close to each other (Kato's perturbation theory...)

 $-\frac{1}{2i\pi}\oint_{\Gamma} (M-z)^{-1} dz = \begin{array}{c} \text{Projection on eigenspaces associated} \\ \text{with eigenvalues of } M \text{ inside } \Gamma \end{array}$

What we (don't) know

We don't know

- Unique continuation in small time ?
- Less controls than equations ? (partial results)
- Higher dimensions ?
- Non-constant coefficients ?

We don't know

- Unique continuation in small time ?
- Less controls than equations ? (partial results)
- Higher dimensions ?
- Non-constant coefficients ?

That's all folks!