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The Problem of
Null-Controllability



Definition of the Null-Controllability

Ω domain of Rn, ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω in time T)
For every initial condition f0 ∈ L2(Ω), there exists a control u ∈ L2([0, T]× ω)

such that the solution f of:

∂tf −∆f = 1ωu, f|∂Ω = 0, f (0) = f0

satisfies f (T) = 0.

Theorem (Controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))
Ω a C2 bounded domain of Rn, ω a non empty open subset of Ω, and T > 0.
The heat equation is null-controllable on ω in time T.
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Some element of proofs



Observability: dual notion to null-controllability

Theorem

• The equation ∂t −∆f = 1ωu is null controllable
is equivalent to

• For every solution of ∂tg−∆g = 0,

|g(T, ·)|2L2(Ω) ≤ C|g|2L2([0,T]×ω).

Theorem (Abstract linear control system)

• The equation ∂tf + Af = Bu is null controllable
is equivalent to

• For every solution of ∂tg+ A∗g = 0,

|g(T)|2H ≤ C
∫ T

0
|B∗g(t)|2U dt.
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Spectral Inequality

Theorem (Spectral inequality, Lebeau & Robbiano 1995)
Ω a C2 bounded domain of Rn, ω a non-empty open subset of Ω.
φk eigenfunction of −∆, eigenvalue λk.∣∣∣ ∑

λk≤µ

akφk
∣∣∣
L2(Ω)

≤ CeK
√
µ
∣∣∣ ∑
λk≤µ

akφk
∣∣∣
L2(ω)

• Allows us to bring components for λk ≤ µ to 0.
• Dissipation of the heat equation : f0 =

∑
λk>µ

akφk

|et∆f0|2L2(Ω) ≤ e−2µt|f0|2L2(Ω)

• Dissipation� spectral inequality =⇒ controllability
• Only depends on the spectral inequality
• E.g. also works for ∂t + (−∆)α (with α > 1/2)
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Examples of parabolic PDEs with
few dissipation



Examples

Examples

• Fractional heat (∂t + (−∆)α)f = 1ωu (α ≤ 1/2)
Spectral inequality with √

µ, Dissipation with µα

• Grushin (∂t − ∂2x − x2∂2y)f = 1ωu
Spectral inequality with µ, Dissipation with µ

• Kolmogorov (∂t − ∂2v − v2∂x)f = 1ωu
Spectral inequality with µ, Dissipation with √

µ

Null-Controllable ?

• Fractional heat (α ≤ 1/2) [MZ M]: no
• Grushin [BCG BMM BDE]: only in large time if ω

• Kolmogorov [BZ B BHHR]: only in large time ω

• Grushin: never null-controllable if ω

• Kolmogorov: never null-controllable if ω
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Half Heat Equation



Half Heat Equation

Observability inequality applied with g(t, y) =
∑

n>0 ane−nteiny :

∑
n>0

|an|2e−2nT ≤ C
∫
[0,T]×ω

∣∣∣∣∣∑
n>0

ane−nteiny
∣∣∣∣∣
2

dt dy

Let ζ = e−t+iy and f (ζ) =
∑
anζn−1∫

D(0,e−T)

|f (ζ)|2 dλ(ζ)

≤ 2π
∑
n>0

|an|2e−2nT

≤ 2πC
∫
D
|f (ζ)|2 dλ(ζ)

ω

D

θ

Untrue thanks to Runge’s theorem (take fk −→ 1/ζ uniformly on every
compact of C \ eiθR+)
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Half-heat equation : more results (without proofs)

Explicit non-null controllable data
ω strict open subset of T.

c > 0 and f0(x) =
∑
n∈Z

aneinx with |an| < c−1e−c|n|.

f0 is null-controllable if and only if f0 = 0.

Rotated half-heat equation
Ω = T or R, <(z) > 0, ω strict open subset of Ω.

The rotated half-heat equation (∂t + z
√
−∆)f (t, x) = 1ωu is never

null-controllable on ω.
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Grushin equation



Grushin equation

Equation
(∂t − ∂2x − x2∂2y)f (t, x, y) = 1ωu on (−1, 1)× T (Dirichlet BC)

Theorem (Duprez-K)

ω = {γ1(y) < x < γ2(y)}
a = max(sup(γ−

2 ), sup(γ
+
1 )) x

y

a
ω

• The Grushin equation is null-controllable if T > a2/2.
• The Grushin equation is not null-controllable if T < a2/2.
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Grushin: null-controllability in large time

x

y

a

ω

⊃ Supp(∇χ)

• Minimal time known for vertical bands [BDE 2018]

• uleft controls f0 from a band on the left (possible if T > a2/2)
• uright controls f0 from a band on the right (possible if T > a2/2)
• χ cutoff with Supp(∇ξ) ⊂ ω, χ = 0 “left of ω” and χ = 1 “right of ω”
• f := χfleft + (1− χ)fright.
(∂t − ∂2x − x2∂2y)f = χuleft + (1− χ)uright + some things with ∇χ,∆χ
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Grushin: Lack of null controllability in small time

Observability inequality for the Grushin equation
(∂t − ∂2x − x2∂2y)g(t, x, y) = 0 =⇒ |g(T, ·, ·)|L2(R×T) ≤ C|g|L2([0,T]×R×ωy)

Grushin and half-heat equation
g(t, x, y) =

∑
n>0

ane−nte−nx
2/2+iny. In y variable: looks like half-heat.
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Subcritical fractional heat
equation and Kolmogorov
equation



Fractional Heat Equation (α < 1/2, <(z) > 0)

Non-null-controllability of ∂t + z(−∆)α on Ω = R, ω = {|x| > ε}

• Controllability⇔ observability:
(∂t + z̄(−∆)α)g = 0 =⇒ |g(T, ·)|L2(Ω) ≤ C|g|L2([0,T]×ω)

• g0,h that concentrates near 0: g0,h(x) = χ(hDx − ξ0)e−x
2/2h+ixξ0/h

gh(t, x) = ch
∫
R
χ(ξ − ξ0)e−(ξ−ξ0)

2/2h+ixξ/h−tz̄|ξ|2α/h2αdξ

• Saddle point method:

gh(t, x) = O
(

1
|x|∞

e−c/h−cth
−2α

)
|x| > ε

gh(t, x) = eixξ0/h−x
2/2h−O(h−2α) |x| < ξ0

4
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Kolmogorov equation

Observability inequality for the Kolmogorov equation

(∂t − ∂2v + v2∂x)g(t, x, v) = 0 =⇒ |g(T, ·, ·)|L2(T×R) ≤ C|g|L2([0,T]×ωx×R)

Kolmogorov and fractional heat equation
g(t, x, v) =

∑
n>0

ane−
√
in te−

√
in v2/2+inx

In x variable, looks like (∂t +
√
i(−∂2x )

1/4)g(t, x) = 0.

Counter-example to the observability inequality
g̃h(t, x) previous counter-example to

(∂t +
√
i(−∂2x )

1/4)g̃(t, x) = 0 =⇒ |g̃(T, ·)|L2(T) ≤ C|g̃|L2([0,T]×ωx)

choose gh(t, x, v) = g̃h(t + v2/2, x).
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Conclusion



Some open problems

• Situation much more complicated for degenerate parabolic equations
than for heat equation

• Special cases only/ad-hoc methods
• Results for Grushin limited to the potential x2

• Results limited to Ω = R or T for the fractional heat equation
• …

• Few insights in the underlying mechanisms
• Geometric condition ?
• Mystery: minimal time see everything between the degeneracy and the
control region

That’s all folks!
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