(Non) Null Controllability of Some Degenerate Parabolic Equations

Armand Koenig

2019, june 20th

Dispersive waves and related topics Conference in honor of Gilles Lebeau

The Problem of Null-Controllability

Ω domain of \mathbb{R}^n , ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω in time T) For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that the solution f of:

$$\partial_t f - \Delta f = \mathbf{1}_{\boldsymbol{\omega}} u, \quad f_{\mid \partial \Omega} = 0, \quad f(0) = f_0$$

satisfies f(T) = 0.

Ω domain of \mathbb{R}^n , ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω in time T) For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that the solution f of:

$$\partial_t f - \Delta f = \mathbf{1}_{\boldsymbol{\omega}} u, \quad f_{\mid \partial \Omega} = 0, \quad f(0) = f_0$$

satisfies f(T) = 0.

Theorem (Controllability of the heat equation (Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996)) Ω a C^2 bounded domain of \mathbb{R}^n , ω a non empty open subset of Ω , and T > 0. The heat equation is null-controllable on ω in time T.

Some element of proofs

Observability: dual notion to null-controllability

Theorem

- The equation $\partial_t \Delta f = \mathbf{1}_{\omega} u$ is null controllable is equivalent to
- For every solution of $\partial_t g \Delta g = 0$,

 $|g(T,\cdot)|^2_{L^2(\Omega)} \leq C|g|^2_{L^2([0,T]\times\boldsymbol{\omega})}.$

Observability: dual notion to null-controllability

Theorem

- The equation $\partial_t \Delta f = \mathbf{1}_{\omega} u$ is null controllable is equivalent to
- For every solution of $\partial_t g \Delta g = 0$,

$$|g(T,\cdot)|^2_{L^2(\Omega)} \leq C|g|^2_{L^2([0,T]\times\boldsymbol{\omega})}.$$

Theorem (Abstract linear control system)

- The equation $\partial_t f + Af = Bu$ is null controllable is equivalent to
- For every solution of $\partial_t g + A^* g = 0$,

$$|g(T)|_{H}^{2} \leq C \int_{0}^{T} |B^{*}g(t)|_{U}^{2} dt.$$

Theorem (Spectral inequality, Lebeau & Robbiano 1995) $\Omega \ a \ C^2 \ bounded \ domain \ of \ \mathbb{R}^n, \ \omega \ a \ non-empty \ open \ subset \ of \ \Omega.$ $\phi_k \ eigenfunction \ of \ -\Delta, \ eigenvalue \ \lambda_k.$

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

Theorem (Spectral inequality, Lebeau & Robbiano 1995) Ω a C^2 bounded domain of \mathbb{R}^n , ω a non-empty open subset of Ω . ϕ_k eigenfunction of $-\Delta$, eigenvalue λ_k .

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

- Allows us to bring components for $\lambda_k \leq \mu$ to 0.
- Dissipation of the heat equation : $f_0 = \sum_{\substack{\lambda_k > \mu \\ l^2(\Omega)}} a_k \phi_k$ $|e^{t\Delta} f_0|^2_{l^2(\Omega)} \le e^{-2\mu t} |f_0|^2_{l^2(\Omega)}$

Theorem (Spectral inequality, Lebeau & Robbiano 1995) Ω a C^2 bounded domain of \mathbb{R}^n , ω a non-empty open subset of Ω . ϕ_k eigenfunction of $-\Delta$, eigenvalue λ_k .

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

- Allows us to bring components for $\lambda_k \leq \mu$ to 0.
- Dissipation of the heat equation : $f_0 = \sum_{\substack{\lambda_k > \mu \\ |e^{t\Delta}f_0|_{L^2(\Omega)}^2} \leq e^{-2\mu t} |f_0|_{L^2(\Omega)}^2$
- \cdot Dissipation \gg spectral inequality \implies controllability
- Only depends on the spectral inequality

Theorem (Spectral inequality, Lebeau & Robbiano 1995) Ω a C^2 bounded domain of \mathbb{R}^n , ω a non-empty open subset of Ω . ϕ_k eigenfunction of $-\Delta$, eigenvalue λ_k .

$$\Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\Omega)} \leq C e^{K\sqrt{\mu}} \Big|\sum_{\lambda_k \leq \mu} a_k \phi_k\Big|_{L^2(\omega)}$$

- Allows us to bring components for $\lambda_k \leq \mu$ to 0.
- Dissipation of the heat equation : $f_0 = \sum_{\substack{\lambda_k > \mu \\ |e^{t\Delta}f_0|_{L^2(\Omega)}^2} \leq e^{-2\mu t} |f_0|_{L^2(\Omega)}^2$
- \cdot Dissipation \gg spectral inequality \implies controllability
- Only depends on the spectral inequality
- E.g. also works for $\partial_t + (-\Delta)^{lpha}$ (with lpha > 1/2)

Examples of parabolic PDEs with few dissipation

Examples

Examples

- Fractional heat $(\partial_t + (-\Delta)^{\alpha})f = \mathbf{1}_{\omega}u$ $(\alpha \le 1/2)$ Spectral inequality with $\sqrt{\mu}$, Dissipation with μ^{α}
- Grushin $(\partial_t \partial_x^2 x^2 \partial_y^2)f = \mathbf{1}_{\boldsymbol{\omega}} u$ Spectral inequality with μ , Dissipation with μ
- Kolmogorov $(\partial_t \partial_v^2 v^2 \partial_x)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with $\sqrt{\mu}$

Examples

Examples

- Fractional heat $(\partial_t + (-\Delta)^{\alpha})f = \mathbf{1}_{\omega}u$ $(\alpha \le 1/2)$ Spectral inequality with $\sqrt{\mu}$, Dissipation with μ^{α}
- Grushin $(\partial_t \partial_x^2 x^2 \partial_y^2)f = \mathbf{1}_{\boldsymbol{\omega}} u$ Spectral inequality with μ , Dissipation with μ
- Kolmogorov $(\partial_t \partial_v^2 v^2 \partial_x)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with $\sqrt{\mu}$

Null-Controllable ?

- Fractional heat ($\alpha \leq 1/2$) [MZ M]: no
- \cdot Grushin [BCG BMM BDE]: only in large time if $\,\omega$
- \cdot Kolmogorov [BZ B BHHR]: only in large time $\,\omega$

Examples

Examples

- Fractional heat $(\partial_t + (-\Delta)^{\alpha})f = \mathbf{1}_{\omega}u$ $(\alpha \le 1/2)$ Spectral inequality with $\sqrt{\mu}$, Dissipation with μ^{α}
- Grushin $(\partial_t \partial_x^2 x^2 \partial_y^2)f = \mathbf{1}_{\boldsymbol{\omega}} u$ Spectral inequality with μ , Dissipation with μ
- Kolmogorov $(\partial_t \partial_v^2 v^2 \partial_x)f = \mathbf{1}_{\omega} u$ Spectral inequality with μ , Dissipation with $\sqrt{\mu}$

Null-Controllable ?

- Fractional heat ($\alpha \leq 1/2$) [MZ M]: no
- \cdot Grushin [BCG BMM BDE]: only in large time if $\,\omega$
- \cdot Kolmogorov [BZ B BHHR]: only in large time $\,\omega$
- \cdot Grushin: never null-controllable if ω
- \cdot Kolmogorov: never null-controllable if ω =

Х

Х

Х

Observability inequality applied with $g(t, y) = \sum_{n>0} a_n e^{-nt} e^{iny}$:

$$\sum_{n>0} |a_n|^2 e^{-2nT} \le C \int_{[0,T]\times \omega} \left| \sum_{n>0} a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Observability inequality applied with $g(t, y) = \sum_{n>0} a_n e^{-nt} e^{iny}$:

$$\sum_{n>0} |a_n|^2 e^{-2nT} \leq C \int_{[0,T] \times \omega} \left| \sum_{n>0} a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Let
$$\zeta = e^{-t+iy}$$
 and $f(\zeta) = \sum a_n \zeta^{n-1}$
$$\int_{D(0,e^{-\tau})} |f(\zeta)|^2 d\lambda(\zeta)$$
$$\leq 2\pi \sum_{n>0} |a_n|^2 e^{-2n\tau}$$
$$\leq 2\pi C \int_{\mathcal{D}} |f(\zeta)|^2 d\lambda(\zeta)$$

Observability inequality applied with $g(t, y) = \sum_{n>0} a_n e^{-nt} e^{iny}$:

$$\sum_{n>0} |a_n|^2 e^{-2nT} \le C \int_{[0,T] \times \omega} \left| \sum_{n>0} a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Let
$$\zeta = e^{-t+iy}$$
 and $f(\zeta) = \sum a_n \zeta^{n-1}$
$$\int_{D(0,e^{-T})} |f(\zeta)|^2 d\lambda(\zeta)$$
$$\leq 2\pi \sum_{n>0} |a_n|^2 e^{-2nT}$$
$$\leq 2\pi C \int_{\mathcal{D}} |f(\zeta)|^2 d\lambda(\zeta)$$

Observability inequality applied with $g(t, y) = \sum_{n>0} a_n e^{-nt} e^{iny}$:

$$\sum_{n>0} |a_n|^2 e^{-2nT} \le C \int_{[0,T] \times \omega} \left| \sum_{n>0} a_n e^{-nt} e^{iny} \right|^2 \, \mathrm{d}t \, \mathrm{d}y$$

Untrue thanks to Runge's theorem (take $f_k \longrightarrow 1/\zeta$ uniformly on every compact of $\mathbf{C} \setminus e^{i\theta} \mathbb{R}_+$)

Explicit non-null controllable data ω strict open subset of \mathbb{T} .

 $c > 0 \text{ and } f_0(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx} \text{ with } |a_n| < c^{-1} e^{-c|n|}.$

 f_0 is null-controllable if and only if $f_0 = 0$.

Explicit non-null controllable data ω strict open subset of \mathbb{T} .

 $c > 0 \text{ and } f_0(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx} \text{ with } |a_n| < c^{-1} e^{-c|n|}.$

 f_0 is null-controllable if and only if $f_0 = 0$.

Rotated half-heat equation $\Omega = \mathbb{T} \text{ or } \mathbb{R}, \Re(z) > 0, \omega \text{ strict open subset of } \Omega.$

The rotated half-heat equation $(\partial_t + z\sqrt{-\Delta})f(t,x) = \mathbf{1}_{\omega}u$ is never null-controllable on ω .

Grushin equation

Equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = \mathbf{1}_{\omega} u \text{ on } (-1, 1) \times \mathbb{T} \text{ (Dirichlet BC)}$

Equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = \mathbf{1}_{\omega} u \text{ on } (-1, 1) \times \mathbb{T} \text{ (Dirichlet BC)}$

Theorem (Duprez-K)

$$\omega = \{\gamma_1(y) < x < \gamma_2(y)\}$$

 $a = \max(\sup(\gamma_2^-), \sup(\gamma_1^+))$

- The Grushin equation is null-controllable if $T>a^2\!/2.$
- The Grushin equation is not null-controllable if $T < a^2/2$.

• Minimal time known for vertical bands [BDE 2018]

- Minimal time known for vertical bands [BDE 2018]
- u_{left} controls f_0 from a band on the left (possible if $T > a^2/2$)

- Minimal time known for vertical bands [BDE 2018]
- u_{left} controls f_0 from a band on the left (possible if $T > a^2/2$)
- u_{right} controls f_0 from a band on the right (possible if $T > a^2/2$)

- Minimal time known for vertical bands [BDE 2018]
- u_{left} controls f_0 from a band on the left (possible if $T > a^2/2$)
- u_{right} controls f_0 from a band on the right (possible if $T > a^2/2$)
- χ cutoff with Supp $(\nabla \xi) \subset \omega$, $\chi = 0$ "left of ω " and $\chi = 1$ "right of ω "
- $\begin{aligned} \cdot \ f &:= \chi f_{\text{left}} + (1 \chi) f_{\text{right}}. \\ (\partial_t \partial_x^2 x^2 \partial_y^2) f &= \chi u_{\text{left}} + (1 \chi) u_{\text{right}} + \text{some things with } \nabla \chi, \Delta \chi \end{aligned}$

Grushin: Lack of null controllability in small time

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2) g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|_{L^2(\mathbb{R} \times \mathbb{T})} \le C |g|_{L^2([0,T] \times \mathbb{R} \times \omega_y)}$

Grushin and half-heat equation $g(t, x, y) = \sum a_n e^{-nt} e^{-n\dot{x}^2/2 + iny}$. In y variable: looks like half-heat. n > 0

Subcritical fractional heat equation and Kolmogorov equation

Non-null-controllability of $\partial_t + z(-\Delta)^{\alpha}$ on $\Omega = \mathbb{R}$, $\omega = \{|x| > \epsilon\}$

• Controllability \Leftrightarrow observability:

 $(\partial_t + \bar{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\boldsymbol{\omega})}$

Non-null-controllability of $\partial_t + z(-\Delta)^{\alpha}$ on $\Omega = \mathbb{R}$, $\omega = \{|x| > \epsilon\}$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- $g_{0,h}$ that concentrates near 0: $g_{0,h}(x) = \chi(hD_x \xi_0)e^{-x^2/2h + ix\xi_0/h}$

Non-null-controllability of $\partial_t + z(-\Delta)^{\alpha}$ on $\Omega = \mathbb{R}$, $\omega = \{|x| > \epsilon\}$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- $g_{0,h}$ that concentrates near 0: $g_{0,h}(x) = \chi(hD_x \xi_0)e^{-x^2/2h + ix\xi_0/h}$

$$g_h(t,x) = c_h \int_{\mathbb{R}} \chi(\xi - \xi_0) e^{-(\xi - \xi_0)^2/2h + ix\xi/h - t\overline{z}|\xi|^{2\alpha}/h^{2\alpha}} \mathrm{d}\xi$$

Non-null-controllability of $\partial_t + z(-\Delta)^{\alpha}$ on $\Omega = \mathbb{R}$, $\omega = \{|x| > \epsilon\}$

- Controllability \Leftrightarrow observability: $(\partial_t + \overline{z}(-\Delta)^{\alpha})g = 0 \implies |g(T, \cdot)|_{L^2(\Omega)} \le C|g|_{L^2([0,T]\times\omega)}$
- $g_{0,h}$ that concentrates near 0: $g_{0,h}(x) = \chi(hD_x \xi_0)e^{-x^2/2h + ix\xi_0/h}$

$$g_h(t,x) = c_h \int_{\mathbb{R}} \chi(\xi - \xi_0) e^{-(\xi - \xi_0)^2/2h + ix\xi/h - t\overline{z}|\xi|^{2\alpha}/h^{2\alpha}} \mathrm{d}\xi$$

• Saddle point method:

$$g_h(t,x) = \mathcal{O}\left(\frac{1}{|x|^{\infty}}e^{-c/h - cth^{-2\alpha}}\right) \qquad |x| > \epsilon$$
$$g_h(t,x) = e^{ix\xi_0/h - x^2/2h - \mathcal{O}(h^{-2\alpha})} \qquad |x| < \frac{\xi_0}{4}$$

Observability inequality for the Kolmogorov equation

 $(\partial_t - \partial_v^2 + v^2 \partial_x)g(t, x, v) = 0 \implies |g(T, \cdot, \cdot)|_{L^2(\mathbb{T} \times \mathbb{R})} \le C|g|_{L^2([0,T] \times \omega_x \times \mathbb{R})}$

Kolmogorov and fractional heat equation

$$g(t, x, v) = \sum_{n>0} a_n e^{-\sqrt{in} t} e^{-\sqrt{in} v^2/2 + inx}$$

In x variable, looks like $(\partial_t + \sqrt{i}(-\partial_x^2)^{1/4})g(t,x) = 0.$

Observability inequality for the Kolmogorov equation

 $(\partial_t - \partial_v^2 + v^2 \partial_x)g(t, x, v) = 0 \implies |g(T, \cdot, \cdot)|_{L^2(\mathbb{T} \times \mathbb{R})} \le C|g|_{L^2([0,T] \times \omega_x \times \mathbb{R})}$

Kolmogorov and fractional heat equation

$$g(t, x, v) = \sum_{n>0} a_n e^{-\sqrt{in} t} e^{-\sqrt{in} v^2/2 + inx}$$

In x variable, looks like $(\partial_t + \sqrt{i}(-\partial_x^2)^{1/4})g(t,x) = 0.$

Counter-example to the observability inequality $\tilde{g}_h(t,x)$ previous counter-example to

$$(\partial_t + \sqrt{i}(-\partial_x^2)^{1/4})\tilde{g}(t,x) = 0 \implies |\tilde{g}(T,\cdot)|_{L^2(\mathbb{T})} \le C|\tilde{g}|_{L^2([0,T]\times\omega_x)}$$

choose $g_h(t, x, v) = \tilde{g}_h(t + v^2/2, x)$.

Conclusion

• Situation much more complicated for degenerate parabolic equations than for heat equation

- Situation much more complicated for degenerate parabolic equations than for heat equation
- Special cases only/ad-hoc methods
 - Results for Grushin limited to the potential x^2
 - + Results limited to $\Omega = \mathbb{R}$ or \mathbb{T} for the fractional heat equation

• ...

- Situation much more complicated for degenerate parabolic equations than for heat equation
- Special cases only/ad-hoc methods
 - Results for Grushin limited to the potential x^2
 - + Results limited to $\Omega=\mathbb{R}$ or \mathbb{T} for the fractional heat equation

• ...

- Few insights in the underlying mechanisms
 - · Geometric condition ?
 - Mystery: minimal time see everything between the degeneracy and the control region

- Situation much more complicated for degenerate parabolic equations than for heat equation
- Special cases only/ad-hoc methods
 - Results for Grushin limited to the potential x^2
 - + Results limited to $\Omega=\mathbb{R}$ or \mathbb{T} for the fractional heat equation

• ...

- Few insights in the underlying mechanisms
 - Geometric condition ?
 - Mystery: minimal time see everything between the degeneracy and the control region

That's all folks!