Control of a degenerate parabolic equation: minimal time and geometric dependance

2019, July 8th

Equadiff 2019

The Problem of Null-Controllability

Ω domain of \mathbb{R}^n , ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω in time T) For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that the solution f of:

$$\partial_t f - \Delta f = \mathbf{1}_{\boldsymbol{\omega}} u, \quad f_{\mid \partial \Omega} = 0, \quad f(0) = f_0$$

satisfies f(T) = 0.

Ω domain of \mathbb{R}^n , ω an open subset of Ω and T > 0.

Definition (Controllability of the heat equation on ω in time T) For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that the solution f of:

$$\partial_t f - \Delta f = \mathbf{1}_{\boldsymbol{\omega}} u, \quad f_{\mid \partial \Omega} = 0, \quad f(0) = f_0$$

satisfies f(T) = 0.

Controllability of the heat equation [Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996] Ω a C^2 bounded domain of \mathbb{R}^n , ω a non empty open subset of Ω , and T > 0. The heat equation is null-controllable on ω in time T.

Observability: dual notion to null-controllability

Theorem

- The equation $\partial_t \Delta f = \mathbf{1}_{\omega} u$ is null controllable is equivalent to
- For every solution of $\partial_t g \Delta g = 0$,

 $|g(T,\cdot)|^2_{L^2(\Omega)} \leq C|g|^2_{L^2([0,T]\times\boldsymbol{\omega})}.$

Observability: dual notion to null-controllability

Theorem

- The equation $\partial_t \Delta f = \mathbf{1}_{\omega} u$ is null controllable is equivalent to
- For every solution of $\partial_t g \Delta g = 0$,

$$|g(T,\cdot)|^2_{L^2(\Omega)} \leq C|g|^2_{L^2([0,T]\times\boldsymbol{\omega})}.$$

Theorem (Abstract linear control system)

- The equation $\partial_t f + Af = Bu$ is null controllable is equivalent to
- For every solution of $\partial_t g + A^* g = 0$,

$$|g(T)|_{H}^{2} \leq C \int_{0}^{T} |B^{*}g(t)|_{U}^{2} dt.$$

A degenerate parabolic equation: the Grushin equation

Examples

Grushin equation

 $(\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = \mathbf{1}_{\omega} u(t, x, y)$ Dirichlet BC on $(-1, 1) \times \mathbb{T}$

Controllable ?

- [K 2017] Never null-controllable if $\,\omega$

Examples

Grushin equation

 $(\partial_t - \partial_x^2 - x^2 \partial_y^2) f(t, x, y) = \mathbf{1}_{\omega} u(t, x, y)$ Dirichlet BC on $(-1, 1) \times \mathbb{T}$

Controllable ?

- Only in large time if ω
 [Beauchard-Cannarsa-Guglielmi 2014, Beauchard-Miller-Morancey 2015, Beauchard-Dardé-Erverdoz 2018]
- [K 2017] Never null-controllable if ω

Theorem [Duprez-K 2018]

$$\omega = \{\gamma_1(y) < x < \gamma_2(y)\}$$

$$a = \max(\sup(\gamma_2^-), \sup(\gamma_1^+))$$

- The Grushin equation is null-controllable if $T > a^2/2$.
- The Grushin equation is not null-controllable if $T < a^2/2$.

Minimal time known for vertical bands [BDE 2018]

- Minimal time known for vertical bands [BDE 2018]
- u_{left} controls f_0 from a band on the left (possible if $T > a^2/2$)

- Minimal time known for vertical bands [BDE 2018]
- u_{left} controls f_0 from a band on the left (possible if $T > a^2/2$)
- u_{right} controls f_0 from a band on the right (possible if $T > a^2/2$)

- Minimal time known for vertical bands [BDE 2018]
- u_{left} controls f_0 from a band on the left (possible if $T > a^2/2$)
- u_{right} controls f_0 from a band on the right (possible if $T > a^2/2$)
- χ cutoff with Supp $(\nabla \chi) \subset \omega$, $\chi = 0$ "left of ω " and $\chi = 1$ "right of ω "
- $f := \chi f_{\text{left}} + (1 \chi) f_{\text{right}}.$ $(\partial_t - \partial_x^2 - x^2 \partial_y^2) f = \chi u_{\text{left}} + (1 - \chi) u_{\text{right}} + \text{some things with } \nabla \chi, \Delta \chi$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \leq C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny}$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \leq C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny}$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny}$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny} = \sum_{n>0} a_n (e^{-t + iy - x^2/2})^n$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny} = \sum_{n>0} a_n (e^{-t + iy - x^2/2})^n$

Upper bound RHS Change of variables $z_x = e^{-t+iy-x^2/2}$ $p(z) = \sum_{\mathbb{R}} a_n z^{n-1}$ RHS $= \iint_{\mathbb{R}} \iint_{\mathcal{D}_x} |p(z_x)|^2 d\lambda(z_x) dx$ $\leq \sup_{z \in \bigcup_{x \in \mathbb{R}} \mathcal{D}_x} C|p(z)|^2$ $\mathcal{D}_x = \{z_x, 0 < t < T, (x, y) \in \omega\}$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny} = \sum_{n>0} a_n (e^{-t + iy - x^2/2})^n$

Upper bound RHS Change of variables $z_x = e^{-t+iy-x^2/2}$ $p(z) = \sum_{\mathbb{R}} a_n z^{n-1}$ RHS $= \iint_{\mathbb{R}} \iint_{\mathcal{D}_x} |p(z_x)|^2 d\lambda(z_x) dx$ $\leq \sup_{z \in \bigcup_{x \in \mathbb{R}} \mathcal{D}_x} C|p(z)|^2$ $\mathcal{D}_x = \{z_x, 0 < t < T, (x, y) \in \omega\}$

 $\xrightarrow{\omega} \\ -a' \qquad a' \\ - \overleftarrow{\omega} \\ -a' \qquad a' \\ - \overleftarrow{\omega} \\ - \overleftarrow{\omega}$

 $|\mathbf{x}| > a'$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

 $g(t, x, y) = \sum_{n>0} a_n e^{-nt} e^{-nx^2/2 + iny} = \sum_{n>0} a_n (e^{-t + iy - x^2/2})^n$

Upper bound RHS Change of variables $z_x = e^{-t+iy-x^2/2}$ $p(z) = \sum_{x \in D_x} a_n z^{n-1}$ RHS $= \iint_{x \in D_x} \int |p(z_x)|^2 d\lambda(z_x) dx$ $\leq \sup_{z \in \bigcup_{x \in \mathbb{R}} D_x} C|p(z)|^2$ $D_x = \{z_x, 0 < t < T, (x, y) \in \omega\}$

Particular solutions

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \omega)}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n (e^{-t+iy-x^2/2})^n, \qquad p(z) = \sum a_n z^{n-1}$

Upper bound RHS RHS $\leq \sup_{\kappa} C|p(z)|^2$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \omega)}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n (e^{-t+iy-x^2/2})^n, \qquad p(z) = \sum a_n z^{n-1}$

Upper bound RHS RHS $\leq \sup_{K} C|p(z)|^2$

Lower bound LHS Polar coordinates computation: LHS $\geq \int_{\mathcal{D}(0,e^{-\tau})} |p(z)|^2 dz$

Observability inequality for the Grushin equation $(\partial_t - \partial_x^2 - x^2 \partial_y^2)g(t, x, y) = 0 \implies |g(T, \cdot, \cdot)|^2_{L^2(\mathbb{R} \times \mathbb{T})} \le C|g|^2_{L^2([0,T] \times \boldsymbol{\omega})}$

Particular solutions $g(t, x, y) = \sum_{n>0} a_n (e^{-t+iy-x^2/2})^n, \qquad p(z) = \sum a_n z^{n-1}$

- Upper bound RHS RHS $\leq \sup_{K} C|p(z)|^2$
- Lower bound LHS Polar coordinates computation: LHS $\geq \int_{\mathcal{D}(0,e^{-\tau})} |p(z)|^2 dz$
- Polynomial estimate $|p|_{L^2(D(0,e^{-\tau}))} \leq C|p|_{L^{\infty}(K)}$
- Does not hold (take $p_k(z) \rightarrow (z - z_0)^{-1}$)

Conclusion

• Situation much more complicated for degenerate parabolic equations than for heat equation

- Situation much more complicated for degenerate parabolic equations than for heat equation
- Special cases only/ad-hoc methods
 - Results for Grushin limited to the potential x^2
 - Equation posed on non rectangular domain ?
 - ...

- Situation much more complicated for degenerate parabolic equations than for heat equation
- Special cases only/ad-hoc methods
 - Results for Grushin limited to the potential x^2
 - Equation posed on non rectangular domain ?

• ...

- Few insights into the underlying mechanisms
 - · Geometric condition ?
 - Mystery: minimal time see everything between the degeneracy and the control region

- Situation much more complicated for degenerate parabolic equations than for heat equation
- Special cases only/ad-hoc methods
 - Results for Grushin limited to the potential x^2
 - Equation posed on non rectangular domain ?
 - ...
- Few insights into the underlying mechanisms
 - Geometric condition ?
 - Mystery: minimal time see everything between the degeneracy and the control region

That's all folks!