Contrôlabilité de quelques équations aux dérivées partielles peu dissipatives

Armand Koenig
10 novembre 2020
Dauphine \mid PSL CEREMADE

Introduction

Control of the heat equation

Ω domain of \mathbb{R}^{n}, ω open subset of Ω and $T>0$.
Definition (Null-controllability of the heat equation on ω in time T)
For every initial condition $f_{0} \in L^{2}(\Omega)$, there exists a control $u \in L^{2}([0, T] \times \omega)$ such that the solution f of:

$$
\partial_{t} f-\Delta f=1_{\omega} u, \quad f_{\mid \partial \Omega}=0, \quad f(0)=f_{0}
$$

satisfies $f(T, \cdot)=0$ on Ω.

Control of the heat equation

Ω domain of \mathbb{R}^{n}, ω open subset of Ω and $T>0$.
Definition (Null-controllability of the heat equation on ω in time T)
For every initial condition $f_{0} \in L^{2}(\Omega)$, there exists a control $u \in L^{2}([0, T] \times \omega)$ such that the solution f of:

$$
\partial_{t} f-\Delta f=1_{\omega} u, \quad f_{\mid \partial \Omega}=0, \quad f(0)=f_{0}
$$

satisfies $f(T, \cdot)=0$ on Ω.
Theorem (Control of the heat equation (Lebeau \& Robbiano 1995, Fursikov \& Imanuvilov 1996))
Ω a C^{2} bounded connected open subset of \mathbb{R}^{n}, ω a non-empty open subset of Ω, and $T>0$. The heat equation is null-controllable ω in time T.

Notion of equation with low dissipation

Fractional heat equation and Kolmogorov-type equation

Half-heat equation and Baouendi-Grushin heat equation

Conclusion

Observability: a notion dual to controllability

Theorem

- The equation $\partial_{t} f-\Delta f=1_{\omega} u$ is null-controllable on ω in time T if and only if
- for every solution of $\partial_{t} g-\Delta g=0$,

$$
|g(T, \cdot)|_{L^{2}(\Omega)}^{2} \leq C|g|_{L^{2}([0, T] \times \omega)}^{2} .
$$

Observability: a notion dual to controllability

Theorem

- The equation $\partial_{t} f-\Delta f=1_{\omega} u$ is null-controllable on ω in time T if and only if
- for every solution of $\partial_{t} g-\Delta g=0$,

$$
|g(T, \cdot)|_{L^{2}(\Omega)}^{2} \leq C|g|_{L^{2}([0, T] \times \omega)}^{2} .
$$

Remark

Duality observability/controlability: happens for every linear equation.
$\left(\partial_{t}+A\right) f=B u$ is null-controllable in time T if and only if for every g_{0},

$$
\left|e^{-T A^{*}} g_{0}\right|^{2} \leq C \int_{0}^{T}\left|B^{*} e^{-t A^{*}} g_{0}\right|^{2} \mathrm{~d} t
$$

Lebeau and Robbiano's method

Theorem (Spectral inequality, Jerison-Lebeau 1996)
Ω a C^{2} connected bounded open subset of \mathbb{R}^{n}, ω a non-empty open subset of Ω.
ϕ_{k} the eigenfunctions of $-\Delta$, with eigenvalues λ_{k}.

$$
\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\Omega)} \leq C e^{K \sqrt{\mu}}\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\omega)}
$$

Lebeau and Robbiano's method

Theorem (Spectral inequality, Jerison-Lebeau 1996)
Ω a C^{2} connected bounded open subset of \mathbb{R}^{n}, ω a non-empty open subset of Ω.
ϕ_{k} the eigenfunctions of $-\Delta$, with eigenvalues λ_{k}.

$$
\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\Omega)} \leq C e^{K \sqrt{\mu}}\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\omega)}
$$

- Allows to steer to zero the frequencies $\lambda_{k} \leq \mu$
- Dissipation of the heat equation: $f_{0}=\sum_{\lambda_{k}>\mu} a_{k} \phi_{k}$

$$
\left|e^{t \Delta} f_{0}\right|_{L^{2}(\Omega)}^{2} \leq e^{-2 \mu t}\left|f_{0}\right|_{L^{2}(\Omega)}^{2}
$$

Lebeau and Robbiano's method

Theorem (Spectral inequality, Jerison-Lebeau 1996)
Ω a C^{2} connected bounded open subset of \mathbb{R}^{n}, ω a non-empty open subset of Ω.
ϕ_{k} the eigenfunctions of $-\Delta$, with eigenvalues λ_{k}.

$$
\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\Omega)} \leq C e^{K \sqrt{\mu}}\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\omega)}
$$

- Allows to steer to zero the frequencies $\lambda_{k} \leq \mu$
- Dissipation of the heat equation: $f_{0}=\sum_{\lambda_{k}>\mu} a_{k} \phi_{k}$

$$
\left|e^{t \Delta} f_{0}\right|_{L^{2}(\Omega)}^{2} \leq e^{-2 \mu t}\left|f_{0}\right|_{L^{2}(\Omega)}^{2}
$$

- Dissipation \gg spectral inequality \Longrightarrow null-controllability
- Depends only on the spectral inequality

Lebeau and Robbiano's method

Theorem (Spectral inequality, Jerison-Lebeau 1996)
Ω a C^{2} connected bounded open subset of \mathbb{R}^{n}, ω a non-empty open subset of Ω.
ϕ_{k} the eigenfunctions of $-\Delta$, with eigenvalues λ_{k}.

$$
\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\Omega)} \leq C e^{K \sqrt{\mu}}\left|\sum_{\lambda_{k} \leq \mu} a_{k} \phi_{k}\right|_{L^{2}(\omega)}
$$

- Allows to steer to zero the frequencies $\lambda_{k} \leq \mu$
- Dissipation of the heat equation: $f_{0}=\sum_{\lambda_{k}>\mu} a_{k} \phi_{k}$

$$
\left|e^{t \Delta} f_{0}\right|_{L^{2}(\Omega)}^{2} \leq e^{-2 \mu t}\left|f_{0}\right|_{L^{2}(\Omega)}^{2}
$$

- Dissipation \gg spectral inequality \Longrightarrow null-controllability
- Depends only on the spectral inequality
- Also proves the null-controllability $\partial_{\mathrm{t}}+(-\Delta)^{\alpha}$ with $\alpha>1 / 2$
- What happens if $\alpha \leq 1 / 2$?

Equations with low dissipation

Fractional heat $\left(\partial_{t}+(-\Delta)^{\alpha}\right) f=1_{\omega} u \quad(\alpha \leq 1 / 2)$

- Spectral inequality: $e^{K \sqrt{\mu}}$, dissipation: $e^{-t \mu^{\alpha}}$
- Not null-controllable [micu-zuazua, Miller, k]

Equations with low dissipation

Fractional heat $\left(\partial_{t}+(-\Delta)^{\alpha}\right) f=1_{\omega} u \quad(\alpha \leq 1 / 2)$

- Spectral inequality: $e^{K \sqrt{\mu}}$, dissipation: $e^{-t \mu^{\alpha}}$
- Not null-controllable [micu-zuazua, Miller, k]

Baouendi-Grushin heat $\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) f=1_{\omega} u$

- Spectral inequality: $e^{K \mu}$, dissipation: $e^{-t \mu}$
- Null-controllable only in large enough time if ω
 [Beauchard-Cannarsa-Guglielmi, Beauchard-Miller-Morancey, Beauchard-Dardé-Ervedoza]
- Not null-controllable if ω [k, Duprez-K]

Equations with low dissipation

Fractional heat $\left(\partial_{t}+(-\Delta)^{\alpha}\right) f=1_{\omega} u \quad(\alpha \leq 1 / 2)$

- Spectral inequality: $e^{k \sqrt{\mu}}$, dissipation: $e^{-t \mu^{\alpha}}$
- Not null-controllable [micu-zuazua, Miller, k]

Baouendi-Grushin heat $\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) f=1_{\omega} u$

- Spectral inequality: $e^{K \mu}$, dissipation: $e^{-t \mu}$
- Null-controllable only in large enough time if ω
 [Beauchard-Cannarsa-Guglielmi, Beauchard-Miller-Morancey, Beauchard-Dardé-Ervedoza]
- Not null-controllable if ω [K, Duprez-K]

Kolmogorov-type $\left(\partial_{t}-\partial_{v}^{2}+v^{2} \partial_{x}\right) f=1_{\omega} u$

- Spectral inequality: $e^{K \mu}$, dissipation: $e^{-t \sqrt{\mu}}$
- Null-controllable in large enough time if ω
 [Beauchard-Zuazua, Beauchard, Beauchard-Helffer-Henry-Robbiano, Dardé-Royer]
- Not null-controllable if ω
 [k]

What about approximate controllablity?

Approximate controllability

A system $\left(\partial_{t}+A\right) f=B u$ is approximately conntrollable in time T if for every
$\epsilon>0$, and for every states f_{0}, f_{1}, there exists a control $u(t)$ such that
$\left|f(T)-f_{1}\right|<\epsilon$, with

$$
\left(\partial_{t}+A\right) f(t)=B u(T), f(0)=f_{0} .
$$

Some examples

- Fractional heat for $\alpha<1 / 2:$???
- Baouendi-Grushin: approximately controllable in arbitrarily small time on any open non-empty ω
- Kolmogorov-type: ???
- Hypoelliptic $\left(\partial_{t}-\sum X_{i}^{*} X_{i}\right) f(t, x)=1_{\omega} u(t, x)$: with some technical hypotheses, approximately controllable in large enough time [Laurent-Léautaud]

Fractional heat equation and Kolmogorov-type equation

Fractional heat equation

Fractional heat equation

- Fractional Laplacian: $(-\Delta)^{\alpha} f=\mathcal{F}^{-1}\left(|\xi|^{2 \alpha} \mathcal{F} f(\xi)\right)$
- Control system: $\left(\partial_{t}+(-\Delta)^{\alpha}\right) f(t, x)=1_{\omega} u, \quad x \in \mathbb{R}$

Generalized Fractional heat equation

- Fractional Laplacian: $\rho(\sqrt{-\Delta})=\mathcal{F}^{-1}(\rho(|\xi|) \mathcal{F} f(\xi))$
- Control system: $\left(\partial_{t}+\rho(\sqrt{-\Delta})\right) f(t, x)=1_{\omega} u, \quad x \in \mathbb{R}$

Fractional heat equation

Generalized Fractional heat equation

- Fractional Laplacian: $\rho(\sqrt{-\Delta})=\mathcal{F}^{-1}(\rho(|\xi|) \mathcal{F} f(\xi))$
- Control system: $\left(\partial_{t}+\rho(\sqrt{-\Delta})\right) f(t, x)=1_{\omega} u, \quad x \in \mathbb{R}$

Theorem (Non-null-controllability of the fractional heat equation (K 2019)) Let $K>0$ and $\mathcal{C}=\{\Re(\xi)>K,|\Im(\xi)|<K \Re(\xi)\}$. Let $\rho: \mathcal{C} \cup \mathbb{R}_{+} \rightarrow \mathbb{C}$ such that

- $\inf _{\xi>0} \Re(\rho(\xi))>-\infty$
- ρ is holomorphic on \mathcal{C}
- $\rho=o(|\xi|)$ for $|\xi| \rightarrow+\infty, \xi \in \mathcal{C}$

Let $T>0$ and ω a strict open subet of \mathbb{R}. The equation

$$
\left(\partial_{t}+\rho(\sqrt{-\Delta})\right) f=1_{\omega} u
$$

is not null-controllable on ω in time T.
$\Omega=\mathbb{R}, \omega=\{|x|>\epsilon\}$.
Non-null-controllability of $\partial_{t}+\rho(\sqrt{-\Delta})$.

- Controlability \Leftrightarrow observability:

$$
\left(\partial_{t}+\bar{\rho}(\sqrt{-\Delta})\right) g=0 \Longrightarrow|g(T, \cdot)|_{L^{2}(\Omega)} \leq C|g|_{L^{2}([0, T] \times \omega)}
$$

$\Omega=\mathbb{R}, \omega=\{|x|>\epsilon\}$.
Non-null-controllability of $\partial_{t}+\rho(\sqrt{-\Delta})$.

- Controlability \Leftrightarrow observability:

$$
\left(\partial_{t}+\bar{\rho}(\sqrt{-\Delta})\right) g=0 \Longrightarrow|g(T, \cdot)|_{L^{2}(\Omega)} \leq C|g|_{L^{2}([0, T] \times \omega)}
$$

- g_{0} that concentrates at 0: $g_{0}(x)=\chi\left(h D_{x}-\xi_{0}\right) e^{-x^{2} / 2 h+i x \xi_{0} / h}$

Fractional heat equation: non-null-controllability

$\Omega=\mathbb{R}, \omega=\{|x|>\epsilon\}$.
Non-null-controllability of $\partial_{t}+\rho(\sqrt{-\Delta})$.

- Controlability \Leftrightarrow observability:

$$
\left(\partial_{t}+\bar{\rho}(\sqrt{-\Delta})\right) g=0 \Longrightarrow|g(T, \cdot)|_{L^{2}(\Omega)} \leq C|g|_{L^{2}([0, T] \times \omega)}
$$

- g_{0} that concentrates at $0: g_{0}(x)=\chi\left(h D_{x}-\xi_{0}\right) e^{-x^{2} / 2 h+i x \xi_{0} / h}$

$$
g(t, x)=c_{h} e^{i x \xi_{0} / h-x^{2} / 2 h} \int_{\mathbb{R}} \chi(\xi) e^{-(\xi-i x)^{2} / 2 h-t \bar{\rho}\left(\left(\xi+\xi_{0}\right) / h\right)} \mathrm{d} \xi
$$

Fractional heat equation: non-null-controllability

$\Omega=\mathbb{R}, \omega=\{|x|>\epsilon\}$.
Non-null-controllability of $\partial_{t}+\rho(\sqrt{-\Delta})$.

- Controlability \Leftrightarrow observability:

$$
\left(\partial_{t}+\bar{\rho}(\sqrt{-\Delta})\right) g=0 \Longrightarrow|g(T, \cdot)|_{L^{2}(\Omega)} \leq C|g|_{L^{2}([0, T] \times \omega)}
$$

- g_{0} that concentrates at $0: g_{0}(x)=\chi\left(h D_{x}-\xi_{0}\right) e^{-x^{2} / 2 h+i x \xi_{0} / h}$

$$
g(t, x)=c_{h} e^{i x \xi_{0} / h-x^{2} / 2 h} \int_{\mathbb{R}} \chi(\xi) e^{-(\xi-i x)^{2} / 2 h-t \bar{\rho}\left(\left(\xi+\xi_{0}\right) / h\right)} \mathrm{d} \xi
$$

- Saddle point method:

$$
\begin{array}{ll}
g(t, x)=\mathcal{O}\left(\frac{1}{|x|^{\infty}} e^{-c t / h}\right) & |x|>\epsilon \\
g(t, x)=e^{i x \xi_{0} / h-x^{2} / 2 h-" O(\rho(1 / h))^{n}} & |x|<\delta
\end{array}
$$

Kolmogorov-type equation

A Kolmogorov-type equation

$$
\left(\partial_{t}-\partial_{v}^{2}+v^{2} \partial_{x}\right) f(t, x, v)=1_{\omega} u(t, x, v), x \in \mathbb{R}, v \in \mathbb{R}
$$

A Kolmogorov-type equation

$$
\left(\partial_{t}-\partial_{v}^{2}+v^{2} \partial_{x}\right) f(t, x, v)=1_{\omega} u(t, x, v), x \in \mathbb{R}, v \in \mathbb{R}
$$

«Embedding» of the fractional heat in the Kolmogorov-type equation

- For $\xi \in \mathbb{R}, e^{-\sqrt{i \xi v^{2}} / 2+i x \xi}$ eigenfunction, eigenvalue $\sqrt{i \xi}$
- Particular solution: $g(t, x, v)=\int_{\mathbb{R}} a(\xi) e^{i x \xi-\sqrt{i \xi}\left(t+v^{2} / 2\right)} \mathrm{d} \xi$
- In x-variable: solution of $\left(\partial_{t}+\sqrt{i}\left(-\Delta_{x}\right)^{1 / 4}\right) g(t, x)=0$

Kolmogorov-type equation

A Kolmogorov-type equation

$$
\left(\partial_{t}-\partial_{v}^{2}+v^{2} \partial_{x}\right) f(t, x, v)=1_{\omega} u(t, x, v), x \in \mathbb{R}, v \in \mathbb{R}
$$

«Embedding» of the fractional heat in the Kolmogorov-type equation

- For $\xi \in \mathbb{R}, e^{-\sqrt{i \xi} v^{2} / 2+i x \xi}$ eigenfunction, eigenvalue $\sqrt{i \xi}$
- Particular solution: $g(t, x, v)=\int_{\mathbb{R}} a(\xi) e^{i x \xi-\sqrt{i \xi}\left(t+v^{2} / 2\right)} \mathrm{d} \xi$
- In x-variable: solution of $\left(\partial_{t}+\sqrt{i}\left(-\Delta_{x}\right)^{1 / 4}\right) g(t, x)=0$

Theorem (Kolmogorov-type controlled on vertical strip)
Let $T>0, \omega_{v}$ a strict open subset \mathbb{R} and $\omega=\omega_{v} \times \mathbb{R}$. The Kolmogorov-type equation is not null-controllable on ω in time T.

Kolmogorov-type equation

A Kolmogorov-type equation

$$
\left(\partial_{t}-\partial_{v}^{2}+v^{1} \partial_{x}\right) f(t, x, v)=1_{\omega} u(t, x, v), x \in \mathbb{R}, v \in \mathbb{R}_{+}
$$

«Embedding» of the fractional heat in the Kolmogorov-type equation

- For $\xi \in \mathbb{R}, \operatorname{Ai}\left(\xi^{1 / 3} e^{-i \pi / 6} v-\mu_{0}\right)$ eigenfunction, eigenvalue $e^{i \pi / 3} \mu_{0} \xi^{2 / 3}$
- Particular solution: $g(t, x, v)=\int_{\mathbb{R}} a(\xi) e^{i x \xi-t e^{i \pi / 3} \mu_{0} \xi^{2 / 3}} A i\left(e^{-i \pi / 6} \xi^{1 / 3} v-\mu_{0}\right) \mathrm{d} \xi$
- In x-variable: pertubation of $\left(\partial_{t}+e^{i \pi / 3} \mu_{0}\left(-\Delta_{x}\right)^{1 / 3}\right) g(t, x)=0$

Theorem (Kolmogorov-type controlled on vertical strip)
Let $T>0, \omega_{v}$ a strict open subset \mathbb{R} and $\omega=\omega_{v} \times \mathbb{R}$. The Kolmogorov-type equation is not null-controllable on ω in time T.

Kolmogorov-type equation

A Kolmogorov-type equation

$$
\left(\partial_{t}-\partial_{v}^{2}+v^{1} \partial_{x}\right) f(t, x, v)=1_{\omega} u(t, x, v), x \in \mathbb{R}, v \in \mathbb{R}_{+}
$$

«Embedding» of the fractional heat in the Kolmogorov-type equation

- For $\xi \in \mathbb{R}, \operatorname{Ai}\left(\xi^{1 / 3} e^{-i \pi / 6} v-\mu_{0}\right)$ eigenfunction, eigenvalue $e^{i \pi / 3} \mu_{0} \xi^{2 / 3}$
- Particular solution: $g(t, x, v)=\int_{\mathbb{R}} a(\xi) e^{i x \xi-t e^{i \pi / 3} \mu_{0} \xi^{2 / 3}} A i\left(e^{-i \pi / 6} \xi^{1 / 3} v-\mu_{0}\right) d \xi$
- In x-variable: pertubation of $\left(\partial_{t}+e^{i \pi / 3} \mu_{0}\left(-\Delta_{x}\right)^{1 / 3}\right) g(t, x)=0$

Theorem (Kolmogorov-type controlled on vertical strip)
Let $T>0, \omega_{v}$ a strict open subset \mathbb{R} and $\omega=\omega_{v} \times \mathbb{R}$. The Kolmogorov-type equation is not null-controllable on ω in time T.

More equations/results
-1-D torus in x, segment in v

- $\left(\partial_{t}^{2}-\partial_{t}^{2} \partial_{x}^{2}-\partial_{x}^{2}\right) f(t, x)=1_{\omega} u(t, x)$, perturbation of $(-\Delta)^{0}$
- ...?

Half-heat equation and Baouendi-Grushin heat equation

Half-heat equation

Half-heat equation

- Half-Laplacian: $\sqrt{-\Delta}\left(\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{i n x}\right)=\sum_{n \in \mathbb{Z}}|n| \widehat{f}(n) e^{i n x}$
- Control system: $\left(\partial_{t}+\sqrt{-\Delta}\right) f(t, x)=1_{\omega} u, \quad x \in \mathbb{T}$

Half-heat equation

Half-heat equation

- Half-Laplacian: $\sqrt{-\Delta}\left(\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{i n x}\right)=\sum_{n \in \mathbb{Z}}|n| \widehat{f}(n) e^{i n x}$
- Control system: $\left(\partial_{t}+\sqrt{-\Delta}\right) f(t, x)=1_{\omega} u, \quad x \in \mathbb{T}$

Theorem (Non-null-controllability)

Let $T>0$ and ω a strict open subset of \mathbb{T}. The half-heat equation

$$
\left(\partial_{t}+\sqrt{-\Delta}\right) f=1_{\omega} u
$$

is not null-controllable on ω in time T.

Non-null-controllability of the half heat

Proof.

Test observability inequality with $g(t, x)=\sum_{n>0} a_{n} e^{-n t} e^{i n x}$:

$$
\sum_{n>0}\left|a_{n}\right|^{2} e^{-2 n T} \leq C \int_{[0, T] \times \omega}\left|\sum_{n>0} a_{n} e^{-n t} e^{i n x}\right|^{2} \mathrm{~d} t \mathrm{~d} x
$$

Non-null-controllability of the half heat

Proof.

Test observability inequality with $g(t, x)=\sum_{n>0} a_{n} e^{-n t} e^{i n x}$:

$$
\sum_{n>0}\left|a_{n}\right|^{2} e^{-2 n T} \leq C \int_{[0, T] \times \omega}\left|\sum_{n>0} a_{n} e^{-n t} e^{i n x}\right|^{2} \mathrm{~d} t \mathrm{~d} x
$$

- Change of variables: $z=e^{-t+i x}$

$$
|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{\mathcal{D}}\left|\sum_{n>0} a_{n} z^{n-1}\right|^{2} \mathrm{~d} \lambda(z)
$$

- Computation in polar coordinates:

$$
|g(T, \cdot)|_{L^{2}(\mathbb{T})}^{2} \geq \pi^{-1} \int_{D\left(0, e^{-T}\right)}\left|\sum_{n>0} a_{n} z^{n-1}\right|^{2} \mathrm{~d} \lambda(z)
$$

Non-null-controllability of the half heat

Proof.

Test observability inequality with $g(t, x)=\sum_{n>0} a_{n} e^{-n t} e^{i n x}$:

$$
\sum_{n>0}\left|a_{n}\right|^{2} e^{-2 n T} \leq C \int_{[0, T] \times \omega}\left|\sum_{n>0} a_{n} e^{-n t} e^{i n x}\right|^{2} \mathrm{~d} t \mathrm{~d} x
$$

- Change of variables: $z=e^{-t+i x}$

$$
|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{\mathcal{D}}\left|\sum_{n>0} a_{n} z^{n-1}\right|^{2} \mathrm{~d} \lambda(z)
$$

- Computation in polar coordinates:

$$
|g(T, \cdot)|_{L^{2}(\mathbb{T})}^{2} \geq \pi^{-1} \int_{D\left(0, e^{-T}\right)}\left|\sum_{n>0} a_{n} z^{n-1}\right|^{2} \mathrm{~d} \lambda(z)
$$

- Observability \Rightarrow for every $p \in \mathbb{C}[X],|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)} \leq C|p|_{L^{2}(\mathcal{D})}$
- Not true according to the Runge theorem (there exists $p_{k}(z) \longrightarrow 1 / z$ away from $\left.\mathbb{C} \backslash e^{i \theta} \mathbb{R}_{+}\right)$

Baouendi-Grushin heat equation

$$
\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) f(t, x, y)=1_{\omega} u(t, x, y), x \in \mathbb{R}, y \in \mathbb{T}
$$

Baouendi-Grushin heat equation

$$
\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) f(t, x, y)=1_{\omega} u(t, x, y), x \in \mathbb{R}, y \in \mathbb{T}
$$

«Embedding» of the half-heat in the Baouendi-Grushin heat equation

- For $n \in \mathbb{N}, e^{-n x^{2} / 2+i n y}$ eigenfunction, eigenvalue n
- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}$
- In the y-variable: solution of the half-heat equation

Theorem (Baouendi-Grushin heat equation on horizontal strip)

Control of the Baouendi-Grushin heat equation

Theorem (Baouendi-Grushin heat equation on horizontal strip)

Theorem (Beauchard-Dardé-Ervedoza 2018)

Control of the Baouendi-Grushin heat equation

Theorem (Baouendi-Grushin heat equation on horizontal strip)

Theorem (Beauchard-Dardé-Ervedoza 2018)

Theorem (Duprez-K 2018)

Proof.

- Null-controlability in large time known on vertical strip

Proof.

- Null-controlability in large time known on vertical strip
- $u_{\text {left }}$ control on a vertical strip on the left (possible if $T>a^{2} / 2$)

Proof.

- Null-controlability in large time known on vertical strip
- $u_{\text {left }}$ control on a vertical strip on the left (possible if $T>a^{2} / 2$)
- $u_{\text {right }}$ control on a vertical strip on the right (possible if $T>a^{2} / 2$)

Large time null-controllabilty

Proof.

- Null-controlability in large time known on vertical strip
- $u_{\text {left }}$ control on a vertical strip on the left (possible if $T>a^{2} / 2$)
- $u_{\text {right }}$ control on a vertical strip on the right (possible if $T>a^{2} / 2$)
- χ cutoff with $\operatorname{Supp}(\nabla \chi) \subset \omega, \chi=0$ «left of ω » and $\chi=1$ «right of ω »
- $f:=\chi f_{\text {left }}+(1-\chi) f_{\text {right }}$.
$\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) f=\chi u_{\text {left }}+(1-\chi) u_{\text {right }}+$ terms involving $\nabla \chi, \Delta \chi$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$

Non-null-controllability in small time

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Non-null-controllability in small time

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2}:|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2}:|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2}:|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Non-null-controllability in small time

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Non-null-controllability in small time

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Non-null-controllability in small time

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of var $z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

Proof.

- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n t-n x^{2} / 2+i n y}, \quad p(z)=\sum_{n>0} a_{n} z^{n-1}$
- Lower bound LHS: $|g(T, \cdot, \cdot)|_{L^{2}}^{2} \geq \sum \frac{\left|a_{n}\right|^{2}}{\sqrt{n}} e^{-2 n T} \geq c|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)}^{2}$
- RHS: chg of $\operatorname{var} z=e^{-t+i y-x^{2} / 2:}|g|_{L^{2}([0, T] \times \omega)}^{2}=\int_{-\infty}^{+\infty} \int_{\mathcal{D}_{x}}|p(z)|^{2} \mathrm{~d} \lambda(z) \mathrm{d} x$

$$
\mathcal{D}_{x}=\left\{e^{-t+i y-x^{2} / 2}, t \in[0, T],(x, y) \in \omega\right\}
$$

- Observability \Rightarrow for every $p \in \mathbb{C}[X],|p|_{L^{2}\left(D\left(0, e^{-T}\right)\right)} \leq C|p|_{L^{\infty}(K)}$

Baouendi-Grushin heat on a bounded domain

- $\left.\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) g(t, x, y)=0, x \in\right]-1,1[, y \in \mathbb{T}$, Dirichlet boundary conditions
- Eigenfunction: $v_{n}(x)=w_{n}(x) e^{-n x^{2} / 2+i n y}$, eigenvalue: $\lambda_{n}=n+\rho_{n}$
- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n x^{2} / 2-n t+i n y} w_{n}(x) e^{-\rho_{n} t}$

Baouendi-Grushin heat on a bounded domain

- $\left.\left(\partial_{t}-\partial_{x}^{2}-x^{2} \partial_{y}^{2}\right) g(t, x, y)=0, x \in\right]-1,1[, y \in \mathbb{T}$, Dirichlet boundary conditions
- Eigenfunction: $v_{n}(x)=w_{n}(x) e^{-n x^{2} / 2+i n y}$, eigenvalue: $\lambda_{n}=n+\rho_{n}$
- Particular solutions: $g(t, x, y)=\sum_{n>0} a_{n} e^{-n x^{2} / 2-n t+i n y} w_{n}(x) e^{-\rho_{n} t}$

Definition

$(\gamma(n))$ a sequence. H_{γ} the operator on polynomials

$$
H_{\gamma}: \sum a_{n} z^{n} \mapsto \sum \gamma(n) a_{n} z^{n}
$$

Find continuity-like estimates for H_{γ} in the right norms

Estimations on the operators H_{γ}

Theorem

γ holomorphic bounded on $\{\Re(z)>C\}$. K a compact subset of $\mathbb{C} . U \supset K$, open, star-shaped with respect to $0 . p=\sum a_{n} z^{n} \in \mathbb{C}[X]$

$$
\left|H_{\gamma} P\right|_{L \infty(K)} \leq C|p|_{L^{\infty}(U)} \quad\left|\sum_{n>0} \gamma(n) a_{n} z^{n}\right|_{L^{\infty}(K)} \leq C\left|\sum_{n>0} a_{n} z^{n}\right|_{L^{\infty}(U)}
$$

Theorem

γ holomorphic bounded on $\{\Re(z)>C\}$. K a compact subset of $\mathbb{C} . U \supset K$, open, star-shaped with respect to $0 . p=\sum a_{n} z^{n} \in \mathbb{C}[X]$

$$
\left|H_{\gamma} p\right|_{L \infty(K)} \leq C|p|_{L \infty(U)} \quad\left|\sum_{n>0} \gamma(n) a_{n} z^{n}\right|_{L^{\infty}(K)} \leq C\left|\sum_{n>0} a_{n} z^{n}\right|_{L^{\infty}(U)}
$$

Proof.

- With $K_{\gamma}(\zeta)=\sum \gamma(n) \zeta^{n}, \quad H_{\gamma} p(z)=\frac{1}{2 i \pi} \oint_{\partial D} \frac{1}{\zeta} K_{\gamma}\left(\frac{z}{\zeta}\right) p(\zeta) d \zeta$
- Theorem : $\mathrm{K}_{\gamma}(\zeta)$ extends holomorphically to $\zeta \notin[1,+\infty[$
- Change of integration path:

$$
\left|H_{\gamma} p(z)\right|=\left|\sum_{n>0} \gamma(n) a_{n} z^{n}\right|=\left|\frac{1}{2 i \pi} \oint_{c} \frac{1}{\zeta} K_{\gamma}\left(\frac{z}{\zeta}\right) p(\zeta) \mathrm{d} \zeta\right| \leq C|p|_{\llcorner\infty(c)}
$$

Estimations on the operators H_{γ}

Theorem

γ holomorphic bounded on $\{\Re(z)>C\}$. K a compact subset of $\mathbb{C} . U \supset K$, open, star-shaped with respect to $0 . p=\sum a_{n} z^{n} \in \mathbb{C}[X]$

$$
\left|H_{\gamma} p\right|_{L \infty(K)} \leq C|p|_{L \infty(U)} \quad\left|\sum_{n>0} \gamma(n) a_{n} z^{n}\right|_{L^{\infty}(K)} \leq C\left|\sum_{n>0} a_{n} z^{n}\right|_{L^{\infty}(U)}
$$

Proof.

- With $K_{\gamma}(\zeta)=\sum \gamma(n) \zeta^{n}, \quad H_{\gamma} p(z)=\frac{1}{2 i \pi} \oint_{\partial D} \frac{1}{\zeta} K_{\gamma}\left(\frac{z}{\zeta}\right) p(\zeta) d \zeta$
- Theorem : $K_{\gamma}(\zeta)$ extends holomorphically to $\zeta \notin[1,+\infty[$
- Change of integration path:

$$
\left|H_{\gamma} p(z)\right|=\left|\sum_{n>0} \gamma(n) a_{n} z^{n}\right|=\left|\frac{1}{2 i \pi} \oint_{c} \frac{1}{\zeta} K_{\gamma}\left(\frac{z}{\zeta}\right) p(\zeta) \mathrm{d} \zeta\right| \leq C|p|_{\llcorner\infty(c)} \quad \square
$$

Apply this to $\gamma(n)=w_{n}(x) e^{-\rho_{n} t}$:

$$
\int_{\mathcal{D}_{x}}\left|\sum_{n>0} a_{n} e^{-n x^{2} / 2-n t+i n y} w_{n}(x) e^{-\rho_{n} t}\right|^{2} d t d y \leq C \operatorname{area}\left(\mathcal{D}_{x}\right)\left|\sum a_{n} z^{n-1}\right|_{L^{\infty}(U)}^{2}
$$

Spectral analysis of the harmonic oscillator on $(-1,1)$

Semiclassical non self-adjoint harmonic oscillator

$$
\Re(z)>0, \quad \mathcal{P}_{h}:=-\partial_{x}^{2}+z^{2} x^{2}, \quad D\left(\mathcal{P}_{h}\right)=H^{2}(-1,1) \cap H_{0}^{1}(-1,1)
$$

Spectral analysis of the harmonic oscillator on $(-1,1)$

Semiclassical non self-adjoint harmonic oscillator

$$
\Re(h)>0, \quad \mathcal{P}_{h}:=-h^{2} \partial_{x}^{2}+x^{2}, \quad D\left(\mathcal{P}_{h}\right)=H^{2}(-1,1) \cap H_{0}^{1}(-1,1)
$$

Spectral analysis of the harmonic oscillator on $(-1,1)$

Semiclassical non self-adjoint harmonic oscillator

$$
\Re(h)>0, \quad \mathcal{P}_{h}:=-h^{2} \partial_{x}^{2}+x^{2}, \quad D\left(\mathcal{P}_{h}\right)=H^{2}(-1,1) \cap H_{0}^{1}(-1,1)
$$

Theorem

Let λ_{h} be the (holomorphic continuation of the) first eigenvalue of \mathcal{P}_{h}. Let $\theta \in(0, \pi / 2)$. Then for $|h| \rightarrow 0,|\arg (h)|<\theta, \lambda_{h} \sim h+e^{-1 / h}\left(4 \sqrt{\frac{h}{\pi}}+\ldots\right)$.

Spectral analysis of the harmonic oscillator on $(-1,1)$

Semiclassical non self-adjoint harmonic oscillator

$$
\Re(h)>0, \quad \mathcal{P}_{h}:=-h^{2} \partial_{x}^{2}+x^{2}, \quad D\left(\mathcal{P}_{h}\right)=H^{2}(-1,1) \cap H_{0}^{1}(-1,1)
$$

Theorem

Let λ_{h} be the (holomorphic continuation of the) first eigenvalue of \mathcal{P}_{h}. Let $\theta \in(0, \pi / 2)$. Then for $|h| \rightarrow 0,|\arg (h)|<\theta, \lambda_{h} \sim h+e^{-1 / h}\left(4 \sqrt{\frac{h}{\pi}}+\ldots\right)$.

Sketch of the proof by ODE techniques. $h(1+2 \rho)$

- For $\lambda \in \mathbb{C}$, write solution of $-h^{2} u^{\prime \prime}+x^{2} u=\overbrace{\lambda} u$:

$$
u_{ \pm}(x)=e^{-x^{2} / 2 h} \iint_{\text {some complex path } \Gamma_{ \pm}}^{e^{-\left(t^{2} / 4+x t\right) / h-(1+\rho) \ln (t)} \mathrm{d} t}
$$

- λ eigenvalue " \Leftrightarrow " $\Phi(h, \rho):=\left(1+e^{i \pi \rho}\right) u_{+}(-1)-\left(1+e^{-i \pi \rho}\right) u_{-}(-1)=0$
- Solve the previous implicit equation (for $\rho=\rho(h)$ with a Newton scheme:

$$
\rho_{0}(h)=0, \rho_{n+1}(h)=\rho_{n}(h)-\partial_{\rho} \Phi\left(h, \rho_{n}(h)\right)^{-1} \Phi\left(h, \rho_{n}(h)\right)
$$

- Saddle point method: estimate for Newton and $\rho_{1}(h) \sim e^{-1 / h} 2(\pi h)^{-1 / 2}$

Conclusion

Low diffusion \Longrightarrow not null-controllable in arbitrarily small time

- Fractional heat equation with low dissipation: not null-controllable
- Baouendi-Grushin heat: geometric condition for null-controllability Relevant quantity: maximum Agmon distance between $\{x=0\}$ and ω ?
- Kolmogorov-type: geometric control condition for nul-controllability?

Low diffusion \Longrightarrow not null-controllable in arbitrarily small time

- Fractional heat equation with low dissipation: not null-controllable
- Baouendi-Grushin heat: geometric condition for null-controllability Relevant quantity: maximum Agmon distance between $\{x=0\}$ and ω ?
- Kolmogorov-type: geometric control condition for nul-controllability?

Open problem

- Fractional heat on manifolds? Lower order terms?
- Baouendi-Grushin heat: NSC geometric condition? Underlying phenomenon?
- Kolmogorov-type: NSC geometric condition? Underlying phenomenon?
- General degenerate parabolic equation?

Low diffusion \Longrightarrow not null-controllable in arbitrarily small time

- Fractional heat equation with low dissipation: not null-controllable
- Baouendi-Grushin heat: geometric condition for null-controllability Relevant quantity: maximum Agmon distance between $\{x=0\}$ and ω ?
- Kolmogorov-type: geometric control condition for nul-controllability?

Open problem

- Fractional heat on manifolds? Lower order terms?
- Baouendi-Grushin heat: NSC geometric condition? Underlying phenomenon?
- Kolmogorov-type: NSC geometric condition? Underlying phenomenon?
- General degenerate parabolic equation?

That's all folks!

