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Introduction

Context & problem



Control of PDEs

Ω domain of Rn, ω open subset of Ω and T > 0.

Definition (Null-controllability of the heat equation on ω in time T)
For every initial condition f0 ∈ L2(Ω), there exists a function u ∈ L2([0, T]× ω)

such that the solution f of:

∂tf −∆f = 1ωu, f|∂Ω = 0, f (0) = f0

satisfies f (T, ·) = 0 on Ω.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))
Ω a connected open bounded subset of Rn of class C2, ω a non-empty open
subset of Ω, et T > 0. The heat equation is null-controllable on ω in time T.
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Observability: a dual notion to the controllability

Theorem (Observability⇔ Controllability)

• The equation ∂tf −∆f = 1ωu is null-controllable in time T
if and only if

• for every solution of ∂tg−∆g = 0,

|g(T, ·)|2L2(Ω) ≤ C|g|2L2([0,T]×ω).

Proof.
Integration by parts + Riesz representation theorem in Hilbert spaces

Alternatively: Range(Φ2) ⊂ Range(Φ3) ⇔ |Φ∗
2x| ≤ C|Φ∗

3x|

Remark
Duality observability/controllability: general phenomenon
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Lebeau-Robbiano Method

Theorem (Spectral inequality, Lebeau & Robbiano 1995)
Ω connected C2 open bounded subset of Rn, ω a non-empty open subset of Ω.
φk eigenfunctions of −∆, of eigenvalues λk.∣∣∣ ∑

λk≤µ

akφk
∣∣∣
L2(Ω)

≤ CeK
√
µ
∣∣∣ ∑
λk≤µ

akφk
∣∣∣
L2(ω)

• Allows to kills frequencies λk ≤ µ to 0
• Dissipation of the heat equation: f0 =

∑
λk>µ

akφk

|et∆f0|2L2(Ω) ≤ e−2µt|f0|2L2(Ω)

• Dissipation� spectral inequality =⇒ null-controllability
• Only depends on the spectral inequality
• Also proves null-controllability of ∂t + (−∆)α if α > 1/2
• Equation with low diffusion: dissipation . spectral inequality
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Examples of equations with low diffusion

Fractional heat (∂t + (−∆)α)f = 1ωu (α ≤ 1/2)
• Spectral inequality in √

µ, dissipation in µα

• Not null-controllable [Micu-Zuazua, Miller]

Grushin (∂t − ∂2x − x2∂2y)f = 1ωu
• Spectral inequality in µ, dissipation in µ

• Null-controllable only in large enough time if ω

[Beauchard-Cannarsa-Guglielmi, Beauchard-Miller-Morancey, Beauchard-Dardé-Ervedoza]

• Never null-controllable if ω

Kolmogorov (∂t − ∂2v + v2∂x)f = 1ωu
• Spectral inequality in µ, dissipation in √

µ

• Null-controllable only in large enough time if ω

[Beauchard-Zuazua, Beauchard, Beauchard-Helffer-Henry-Robbiano]

• Never null-controllable if ω
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Possible obstructions to the
null-controllability

Concentration of eigenfunctions



Concentration of eigenfunctions

Example: Grushin equation
(∂t − ∂2x − x2∂2y)f (t, x, y) = 1ωu(t, x, y), x ∈ R, y ∈ T

Concentration of eigenfunctions

• For n ∈ N, e−nx2/2+iny eigenfunction, with eigenvalue n

•
ω = (a,b)× T
|e−nT−nx

2/2+iny|L2(R×T) = cn−1/4e−nT

|e−nt−nx
2/2+iny|L2([0,T]×ω) ≈ cn−1/2e−na

2/2 x

y

a
ω

• Observability inequality untrue if T < a2/2
• We can prove null-controllability if T > a2/2 (much harder)
• Surprising: minimal time for null-controllability
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Possible obstructions to the
null-controllability

Weak Diffusion



Half-heat equation

Half-heat equation

• Half-laplace operator:
√
−∆

(∑
n∈Z

f̂ (n)einx
)

=
∑
n∈Z

|n|̂f (n)einx

• Control system: (∂t +
√
−∆)f (t, x) = 1ωu, x ∈ T

Theorem (Lack of null-controllability)
Let T > 0 and ω a strict open subset of T. The half-heat equation

(∂t +
√
−∆)f = 1ωu

is not null-controllable on ω in time T.
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Lack of null-controllability of half-heat

Proof.
Test observability inequality against g(t, x) =

∑
n>0 ane−nteinx :

∑
n>0

|an|2e−2nT ≤ C
∫
[0,T]×ω

∣∣∣∣∑
n>0

ane−nteinx
∣∣∣∣2 dt dx

• Chg of variables: z = e−t+ix

|g|2L2([0,T]×ω) =

∫
D

∣∣∣∣∑
n>0

anzn−1
∣∣∣∣2 dλ(z)

• Polar coordinates:

|g(T, ·)|2L2(T) ≥ π−1
∫

D(0,e−T)

∣∣∣∣∑
n>0

anzn−1
∣∣∣∣2 dλ(z)

• Observability⇒ for every p ∈ C[X], |p|L2(D(0,e−T)) ≤ C|p|L2(D)

• Untrue thanks to Runge’s theorem (chose pk(z) −→ 1/z away from
C \ eiθR+)

ω

D

θ

D(0, e−T)
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Fractional heat equation

Fractional heat equation

• Fractional Laplace operator: (−∆)αf = F−1(|ξ|2αF f (ξ))
• Control system: (∂t + (−∆)α)f (t, x) = 1ωu, x ∈ R

Theorem (Lack of null-controllability of the fractional heat equation)
Let α < 1/2, T > 0, and ω a strict open subset of R. The fractional heat
equation

(∂t + (−∆)α)f = 1ωu

is not null-controllable on ω in time T.
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Fractional heat: lack of null-controllability

Ω = R, ω = {|x| > ε}.

Proof.

• Controllability⇔ observability:
(∂t + (−∆)α)g = 0 =⇒ |g(T, ·)|L2(Ω) ≤ |g|L2([0,T]×ω)

• g0 that is concentrated at 0: g0(x) =

χ(hDx − ξ0)

e−x2/2h

+ixξ0/h

g(t, x) = cheixξ0/h−x
2/2h

∫
R
χ(ξ)e−(ξ−ix)2/2h−t|ξ+ξ0|2α/h2αdξ

• Saddle point method:

g(t, x) = O
(

1
|x|∞

e−ct/h
)

|x| > ε

g(t, x) = eixξ0/h−x
2/2h−O(h−2α) |x| < ξ0

4
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Results on the Grushin equation



Grushin equation

Grushin equation
(∂t − ∂2x − x2∂2y)f (t, x, y) = 1ωu(t, x, y), x ∈ R, y ∈ T

«Embedding» of the half-heat in the Grushin equation

• For n ∈ N, e−nx2/2+iny eigenfunction, with eigenvalue n
• Particular solutions: g(t, x, y) =

∑
n>0

ane−nt−nx
2/2+iny

• In y-variable: similar to solutions of the half-heat
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Control of the Grushin equation

Theorem (Grushin equation on horizontal band)

x

y
ω ω = R× ωy

Never null-controllable

Theorem (Beauchard-Dardé-Ervedoza 2018)

x

y

a
ω ω = (a,b)× T

Null-controllable on ω iff T > a2/2.

Theorem (Duprez-K 2018)

x

y

a
ω

ω = {γ1(y) < x < γ2(y)}, a = max(sup(γ−
2 ), sup(γ

+
1 ))

Null-controllable on ω if T > a2/2
Not null-controllable on ω if T < a2/2.
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x

y
ω ω = R× ωy

Never null-controllable

Theorem (Beauchard-Dardé-Ervedoza 2018)

x

y

a
ω ω = (a,b)× T

Null-controllable on ω iff T > a2/2.

Theorem (Duprez-K 2018)

x

y

a
ω

ω = {γ1(y) < x < γ2(y)}, a = max(sup(γ−
2 ), sup(γ

+
1 ))

Null-controllable on ω if T > a2/2
Not null-controllable on ω if T < a2/2.

Introduction Grushin Results on the Grushin equation Conclusion 12



Conclusion



What have we learned ?

• Heat equation: always null-controllable

• Situation much more complicated for degenerate parabolic equations than
for heat equation

• Special cases only/ad-hoc methods
• Mystery: minimal time see everything between the degeneracy and the
control region

That’s all folks!
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