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Introduction

Context & problem



Control of PDEs

Q domain of R", w open subset of Q and T > 0.

Definition (Null-controllability of the heat equation on w in time T)

For every initial condition fy € L?(2), there exists a function u € L2([0, T] x w)
such that the solution f of:

of — Af =1,U, flaa =0, f(0)=fo

satisfies f(T,-) = 0 on Q.
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Control of PDEs

Q domain of R", w open subset of Q and T > 0.

Definition (Null-controllability of the heat equation on w in time T)

For every initial condition fy € L?(2), there exists a function u € L2([0, T] x w)
such that the solution f of:

of — Af =1,U, flaa =0, f(0)=fo
satisfies f(T,-) = 0 on Q.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))

Q a connected open bounded subset of R" of class C?, w a hon-empty open
subset of Q, et T > 0. The heat equation is null-controllable on w in time T.
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Observability: a dual notion to the controllability

Theorem (Observability < Controllability)
- The equation 0if — Af = 1,u is null-controllable in time T
if and only if
- for every solution of 8:.g — Ag = 0,

19(T, a0 < ClalEo,17xw):
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Observability: a dual notion to the controllability

Theorem (Observability < Controllability)
- The equation 0if — Af = 1,u is null-controllable in time T
if and only if
- for every solution of 8:.g — Ag = 0,

19(T, i) < ClalE o, 17xw)-
Proof. ' . o
Integration by parts + Riesz representation theorem in Hilbert spaces
Alternatively: Range(®;) C Range(®P3) < [®3x| < C|P3X| O

Remark
Duality observability/controllability: general phenomenon
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Lebeau-Robbiano Method

Theorem (Spectral inequality, Lebeau & Robbiano 1995)
Q connected C? open bounded subset of R", w a non-empty open subset of Q.
¢r eigenfunctions of —A, of eigenvalues .

‘MXS:AL ak%’u( = Cer‘ Z GPr

L2(w)
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Lebeau-Robbiano Method

Theorem (Spectral inequality, Lebeau & Robbiano 1995)
Q connected C? open bounded subset of R", w a non-empty open subset of Q.
¢r eigenfunctions of —A, of eigenvalues .

‘MXS:AL ak%’u( = Cer‘ Z GPr

L2(w)

- Allows to kills frequencies Ay < uto 0

- Dissipation of the heat equation: fo = Y aror
Ap>

i |%Z(Q) < e ?Mfy |§2(Q)
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Lebeau-Robbiano Method

Theorem (Spectral inequality, Lebeau & Robbiano 1995)
Q connected C? open bounded subset of R", w a non-empty open subset of Q.
¢r eigenfunctions of —A, of eigenvalues .

‘MXS:AL ak%’u( = Cer‘ Z GPr

L2(w)

- Allows to kills frequencies Ay < uto 0

- Dissipation of the heat equation: fo = Y aror
Ap>

i |%Z(Q) < e ?Mfy |§2(Q)

- Dissipation > spectral inequality = null-controllability
- Only depends on the spectral inequality
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Lebeau-Robbiano Method

Theorem (Spectral inequality, Lebeau & Robbiano 1995)

Q connected C? open bounded subset of R", w a non-empty open subset of Q.
¢r eigenfunctions of —A, of eigenvalues .

‘MXS:AL ak%’u( = Cer‘ Z GPr

L2(w)

- Allows to kills frequencies Ay < uto 0
- Dissipation of the heat equation: fo = Y aror
Ap>
\emfoﬁzm) < efzut\foﬁzm)

- Dissipation > spectral inequality = null-controllability

- Only depends on the spectral inequality

- Also proves null-controllability of 9; + (—A)* if & > 1/2

- Equation with low diffusion: dissipation < spectral inequality
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Examples of equations with low diffusion

Fractional heat (0; + (—A)*)f =1,u (@ <1/2)
- Spectral inequality in \/, dissipation in p®

+ Not null-controllable [micu-zuazua, miller]
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Examples of equations with low diffusion

Fractional heat (0; + (—A)*)f =1,u (@ <1/2)
- Spectral inequality in \/, dissipation in p®
- Not null-controllable [micu-zuazua, miller]
Grushin (8; — 97 — X292)f = 1,u
- Spectral inequality in w, dissipation in u ﬁ
X

- Null-controllable only in large enough time if w

[Beauchard-Cannarsa-Guglielmi, Beauchard-Miller-Morancey, Beauchard-Dardé-Ervedoza]

- Never null-controllable if w
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Examples of equations with low diffusion

Fractional heat (0; + (—A)*)f =1,u (@ <1/2)
- Spectral inequality in \/, dissipation in p®
- Not null-controllable [micu-zuazua, miller]
Grushin (8; — 97 — X292)f = 1,u
- Spectral inequality in pu, dissipation in p ﬁ
X

- Null-controllable only in large enough time if w

[Beauchard-Cannarsa-Guglielmi, Beauchard-Miller-Morancey, Beauchard-Dardé-Ervedoza]

- Never null-controllable if w N

Kolmogorov (0; — 92 + v2oy)f = 1.u
. . . . . . . V
- Spectral inequality in g, dissipation in /i X
- Null-controllable only in large enough time if w
[Beauchard-Zuazua, Beauchard, Beauchard-Helffer-Henry-Robbiano] 1% X
- Never null-controllable if w //H
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Possible obstructions to the
null-controllability

Concentration of eigenfunctions



Concentration of eigenfunctions

Example: Grushin equation
(at - 85 7X28§)f(tvxvy) = 1wu(t7X7y)7 X e Ray eT
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Concentration of eigenfunctions

Example: Grushin equation
(at - 85 7X28§)f(tvxvy) = 1wu(t7X7y)7 X e Ray eT

Concentration of eigenfunctions

- For n € N, e=™/2+iny gjgenfunction, with eigenvalue n
w=(a,b)xT y

2l =
. ‘e—ﬂT—ﬂX/2+Iﬂy|L2(RXT) = Cﬂ_1/4€_nT a
—nt—nx?/2+in  ~n—1/2 ,—nd%/2 I(—> X
e / Y| 20, T1xw) R €N /2g=na/




Concentration of eigenfunctions

Example: Grushin equation
(at - 85 7X28§)f(tvxvy) = 1wu(t7X7y)7 X e Ray eT

Concentration of eigenfunctions

- For n € N, e=™/2+iny gjgenfunction, with eigenvalue n

w=(a,b)xT
Al e
. ‘e_nT_nX/2+lny|L2(R><’]1‘) _ Cn—1/4e—nT
‘e—m—nxz/z-&-myhz( —1/2e—naz/2 g X

[0,T]xw) = €N

- Observability inequality untrue if T < a?/2

- We can prove null-controllability if T > a?/2 (much harder)

- Surprising: minimal time for null-controllability




Possible obstructions to the
null-controllability

Weak Diffusion



Half-heat equation

Half-heat equation

- Half-laplace operator: \/A<Z]?(n)einx> = In[f(n)e"™

neZ nez
- Control system: (0; + V—=A)f(t,x) =1,u, x€T
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Half-heat equation

Half-heat equation

- Half-laplace operator: \/A(Z]?(n)e””) => In[f(n)e"™

neZ nNEZ
- Control system: (0 + vV—=A)f(t,x) =1,u, xe€T

Theorem (Lack of null-controllability)
Let T > 0 and w a strict open subset of T. The half-heat equation

(O + V=D)f =1,u

is not null-controllable on w in time T.




Lack of null-controllability of half-heat

Proof.
Test observability inequality against g(t,x) = >_

S [an e 2T < C/

n>0 [0,T]xw

—nt pinx.
n>0 ane e’

2
dtdx

inx

a,e e

n>0
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Lack of null-controllability of half-heat

Proof.
Test observability inequality against g(t,x) = >, e e

S [an e 2T < C/

n>0 [0,T]xw
- Chg of variables: z = e~t+¥

‘g‘fZ(m,T]xw)—/ > anz"” [

n>0
- Polar coordlnates

9T ey 27 [

D(0,e™7)

2
dtdx

ane—ntemx

n>0

dA(z

d\(z

Zazn1

) n>0




Lack of null-controllability of half-heat

Proof.
Test observability inequality against g(t,x) = >, e e

2

> lanfe™ < C/ ape”"e™| dtdx
n>0 [0.7]xw | =g
- Chg of variables: z = e~t+¥
‘g‘fz([O,T]xw)_/ Zanz” ) dA(z
n>0
: Polarcoordlnates
19(T, Mizmy = / > a2 d)\
p(oe=T) "0
+ Observability = for every p € C[X], [pli2p(0.e 1)) < CIPliap)

- Untrue thanks to Runge’s theorem (chose py(z) — 1/z away from
C\ e’Ry) O




Fractional heat equation

Fractional heat equation

- Fractional Laplace operator: (—A)%f = F~'(|¢]**Ff(€))
- Control system: (0 + (=A)*)f(t,x) =1,u, Xx€R
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Fractional heat equation

Fractional heat equation

- Fractional Laplace operator: (—A)%f = F~'(|¢]**Ff(€))
- Control system: (0 + (=A)*)f(t,x) =1,u, Xx€R

Theorem (Lack of null-controllability of the fractional heat equation)

Let @« <1/2, T > 0, and w a strict open subset of R. The fractional heat
equation

(G + (=2)%)f = u

is not null-controllable on w in time T.




Fractional heat: lack of null-controllability

Q=R,w={x] >¢€}.
Proof.

- Controllability < observability:
(O +(=A)*)g =0 = |9(T, )liz) < I9le2(0,7xw)
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Q=R,w={x] >¢€}.
Proof.
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Fractional heat: lack of null-controllability

Q=R,w={x] >¢€}.
Proof.

- Controllability < observability:
(O +(=A)*)g =0 = |9(T, )liz) < I9le2(0,7xw)
- go that is concentrated at 0: go(x) = x(hDx — &)e /2 +ix&/h
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Fractional heat: lack of null-controllability

Q=R w={[x] >e€}.
Proof.

- Controllability < observability:
(O +(=A)*)g =0 = |9(T, )liz) < I9le2(0,7xw)
+ go that is concentrated at 0: go(x) = x(hDy — & )e~/2h+ixéo/h

g(t, X) — Che’.)(&[)/hfxz/2h / X(f)ef(‘ff(x)z/zh*t‘f‘FEO|2a/hzadg
R
- Saddle point method:

1
a(t,x) =0 <X|Ooe“/h> x| > €

g(t,x) = e’.XEO/h*XQ/tho(h—za)
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Results on the Grushin equation




Grushin equation

Grushin equation

(at _85 —X2a§)f(t,)(7y) = 1wu(tvx7y)v X € ]Ray eT




Grushin equation

Grushin equation
(at - a)% —X2a§)f(t,)(7y) = 1wu(tvx7y)v X e ]Ray eT

«Embedding» of the half-heat in the Grushin equation

- For n € N, e=™/2+iny gigenfunction, with eigenvalue n

- Particular solutions: g(t,x,y) = Zane‘”t‘”xz/z“”y
n>0
- In y-variable: similar to solutions of the half-heat




Control of the Grushin equation

Theorem (Grushin equation on horizontal band)
Yy

w=R xwy
« Never null-controllable
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Y
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w=(a,b)xT
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Control of the Grushin equation

Theorem (Grushin equation on horizontal band)

]

w=R xwy
Never null-controllable

Theorem (Beauchard-Dardé-Ervedoza 2018)

y

|

w=(a,b) x T

« Null-controllable on w iff T > a?/2.

Theorem (Duprez-K 2018)

Z

w={m(y) <x <7(y)} a=max(sup(y; ),sup(x"))
Null-controllable on w if T > a?/2
X Not null-controllable on w if T < a@?/2.

Results on the Grushin equation

[e]e] }



Conclusion




What have we learned ?

- Heat equation: always null-controllable
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- Situation much more complicated for degenerate parabolic equations than
for heat equation

- Special cases only/ad-hoc methods

- Mystery: minimal time see everything between the degeneracy and the
control region




What have we learned ?

- Heat equation: always null-controllable

- Situation much more complicated for degenerate parabolic equations than
for heat equation

- Special cases only/ad-hoc methods

- Mystery: minimal time see everything between the degeneracy and the
control region

That's all folks!
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