Null-controllability of parabolic-transport systems

Armand Koenig
Dauphine | PSL³⁸ CEREMADE

8th April 2021

Control in Time of Crisis

[Introduction](#page-1-0)

 Ω domain of \mathbb{R}^n , ω an open subset of Ω and $T>0$.

Definition (Null-controllability of the heat equation on ω in time *T*) For every initial condition f_0 ∈ *L*²(Ω), there exists a control *u* ∈ *L*²([0, *T*] × *ω*) such that the solution *f* of:

$$
\partial_t f - \Delta f = 1_\omega u, \quad f_{|\partial \Omega} = 0, \quad f(0) = f_0
$$

satisfies $f(T, \cdot) = 0$ on Ω.

 Ω domain of \mathbb{R}^n , ω an open subset of Ω and $T>0$.

Definition (Null-controllability of the heat equation on ω in time *T*) For every initial condition f_0 ∈ *L*²(Ω), there exists a control *u* ∈ *L*²([0, *T*] × *ω*) such that the solution *f* of:

$$
\partial_t f - \Delta f = 1_\omega u, \quad f_{|\partial \Omega} = 0, \quad f(0) = f_0
$$

satisfies $f(T, \cdot) = 0$ on Ω.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996))

Ω *a C*² *connected bounded open subset of* R *n ,* ω *a non-empty open subset of* Ω*, and T* > 0*. The heat equation is null-controllable on* ω *in time T.*

The equation:

$$
\partial_t f(t, x) + A \partial_x f(t, x) - B \partial_x^2 f(t, x) + K f(t, x) = 1_\omega u(t, x), \quad (t, x) \in [0, +\infty[\times \mathbb{T}
$$

$$
B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}, \quad D + D^* \text{ positive-definite}; \quad A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad A_{11} = A_{11}^*.
$$

Coupling between parabolic and transport equations

$$
f = \begin{pmatrix} f_h \\ f_p \end{pmatrix}, \begin{cases} (\partial_t + A_{11}\partial_x + K_{11})f_h(t, x) + (A_{12}\partial_x + K_{12})f_p(t, x) = \mathbf{1}_{\omega}u_h(t, x) \\ (\partial_t - D\partial_x^2 + A_{22}\partial_x + K_{22})f_p(t, x) + (A_{21}\partial_x + K_{21})f_h(t, x) = \mathbf{1}_{\omega}u_p(t, x) \end{cases}
$$

Question For every, $f_0 \in L^2(\mathbb{T}, \mathbb{C}^d)$ does there exist $u \in L^2([0, T] \times \omega, \mathbb{C}^d)$ such that $f(T, \cdot) = 0$? What if we ask for $u_h = 0$ (or $u_p = 0$) ?

[The results](#page-5-0)

Theorem (Beauchard-K-Le Balc'h 2019)

ω *an open interval of* T*.*

$$
T^* = \frac{2\pi - \text{length}(\omega)}{\min_{\mu \in \text{Sp}(A_{11})} |\mu|}
$$

Then

1. the system is not null-controllable on ω in time T $<$ T*,

2. the system is null-controllable on ω in time T $>$ T*.

Minimal time $=$ minimal time for the transport equation In the case

$$
\partial_t f_h + A_{11} \partial_x f_h = u_h \mathbf{1}_{\omega}
$$

Free solutions = sums of waves travelling at speed $\mu_k \in Sp(A_{11})$.

Theorem (Hyperbolic control, $D = I$ and $K = 0$, Beauchard-K-Le Balc'h 2020)

$$
f = \begin{pmatrix} f_h \\ f_p \end{pmatrix}, \quad \begin{cases} (\partial_t + A_{11} \partial_x) f_h(t, x) + A_{12} \partial_x f_p(t, x) = \mathbf{1}_{\omega} u_h(t, x) \\ (\partial_t - \partial_x^2 + A_{22} \partial_x) f_p(t, x) + A_{21} \partial_x f_h(t, x) = 0 \end{cases}
$$

Controllability in time T > *T* ∗ *for initial conditions with zero average iff* $\mathsf{Vect}\mathrm{\{A}_{22}^iA_{21}V, i \in \mathbb{N}, V \in \mathbb{C}^{d_h}\} = \mathbb{C}^{d_p}$

Theorem (Parabolic control and $K = 0$, Beauchard-K-Le Balc'h 2020)

$$
f = \begin{pmatrix} f_h \\ f_p \end{pmatrix}, \quad \begin{cases} (\partial_t + A_{11} \partial_x) f_h(t, x) + A_{12} \partial_x f_p(t, x) = 0 \\ (\partial_t - D \partial_x^2 + A_{22} \partial_x) f_p(t, x) + A_{21} \partial_x f_h(t, x) = 1_\omega u_p(t, x) \end{cases}
$$

Controllability in time T > *T* ∗ *for initial conditions in Hd*1+¹ *with zero average if* $\mathsf{Vect}\{A^i_{11}A_{12}v, i \in \mathbb{N}, v \in \mathbb{C}^{d_p}\} = \mathbb{C}^{d_h}$.

Navier-Stokes ρ: fluid density. *v*: fluid velocity. *a*, γ, µ > 0.

$$
\begin{cases}\n\partial_t \rho + \partial_x(\rho v) = \mathbf{1}_{\omega} u_1(t, x) \text{ on } [0, T] \times \mathbb{T} \\
\rho(\partial_t v + v \partial_x v) + \partial_x(\mathbf{a} \rho^{\gamma}) - \mu \partial_x^2 v = \mathbf{1}_{\omega} u_2(t, x) \text{ on } [0, T] \times \mathbb{T}\n\end{cases}
$$

Linearization around a stationnary state $(\bar{\rho}, \bar{v}) \in \mathbb{R}_+^* \times \mathbb{R}^*$:

$$
\begin{cases} \n\partial_t \rho + \overline{v} \partial_x \rho + \overline{\rho} \partial_x v = \mathbf{1}_{\omega} u_1(t, x) \text{ sur } [0, T] \times \mathbb{T} \\ \n\partial_t v + \overline{v} \partial_x v + a \overline{\rho}^{\gamma - 2} \partial_x \rho - \frac{\mu}{\rho} \partial_x^2 v = \mathbf{1}_{\omega} u_2(t, x) \text{ on } [0, T] \times \mathbb{T} \n\end{cases}
$$

Navier-Stokes ρ: fluid density. *v*: fluid velocity. *a*, γ, µ > 0.

$$
\begin{cases} \n\partial_t \rho + \partial_x (\rho v) = 1_\omega u_1(t, x) \text{ on } [0, T] \times \mathbb{T} \\ \n\rho (\partial_t v + v \partial_x v) + \partial_x (a \rho^\gamma) - \mu \partial_x^2 v = 1_\omega u_2(t, x) \text{ on } [0, T] \times \mathbb{T} \n\end{cases}
$$

Linearization around a stationnary state $(\bar{\rho}, \bar{v}) \in \mathbb{R}_+^* \times \mathbb{R}^*$:

$$
\begin{cases} \n\partial_t \rho + \overline{v} \partial_x \rho + \overline{\rho} \partial_x v = \mathbf{1}_{\omega} u_1(t, x) \text{ sur } [0, T] \times \mathbb{T} \\ \n\partial_t v + \overline{v} \partial_x v + a \overline{\rho}^{\gamma - 2} \partial_x \rho - \frac{\mu}{\rho} \partial_x^2 v = \mathbf{1}_{\omega} u_2(t, x) \text{ on } [0, T] \times \mathbb{T} \n\end{cases}
$$

- [Ervedoza-Guerrero-Glass-Puel 2012]: equation posed on (0, *L*), boundary control acting on (ρ, v) in time $T > L/|\bar{v}|$
- [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: velocity control in time $T > 2\pi/|\bar{v}|$ for the initial conditions $(\rho_0, v_0) \in H^1 \times L^2$.
- \cdot [Beauchard-K-Le Balc'h 2020] with $A=\big(\frac{\bar{v}}{a\bar{\rho}^{\gamma-2}}\frac{\bar{\rho}}{\bar{v}}\big)$ and $B=\big(\begin{smallmatrix} 0 & 0 \ 0 & \mu/\rho\end{smallmatrix}\big)$: velocity control, in time $T > (2\pi - \text{length}(\omega))/|\bar{v}|$ for initial conditions in $H^2 \times H^2$.

[\(Idea of the\) proof](#page-10-0)

Fourier components

$$
(-B\partial_x^2 + A\partial_x)Xe^{inx} = n^2 \left(B + \frac{i}{n}A\right)Xe^{inx}
$$

Spectrum of $-B\partial_x^2 + A\partial_x^2$ $\mathsf{Sp}(-B\partial_x^2 + A\partial_x) = \left\{ n^2 \mathsf{Sp}\left(B + \frac{i}{n}A\right) \right\}$

Fourier components

$$
(-B\partial_x^2 + A\partial_x)Xe^{inx} = n^2\left(B + \frac{i}{n}A\right)Xe^{inx}
$$

 $\left\{\frac{i}{n}A\right\}$

Spectrum of −*B*∂ 2 *^x* + *A*∂*^x* $\mathsf{Sp}(-B\partial_x^2 + A\partial_x) = \left\{n^2 \mathsf{Sp}\left(B + \frac{B}{n^2}\right)\right\}$

Perturbation theory

 λ_{nk} eigenvalue of $B + \frac{i}{n}A$. λ_k eigenvalue of *B*: $\lambda_{nk} \to \lambda_k \in \mathsf{Sp}(B)$

- \cdot If $\lambda_k \neq 0$, $n^2 \lambda_{nk} \underset{n \to +\infty}{\sim} n^2 \lambda_k$: parabolic frequencies
- \cdot If $\lambda_k = 0$, $n^2 \lambda_{nk} \underset{n \to +\infty}{\sim} in\mu_k$: hyperbolic frequencies

Fourier components

$$
(-B\partial_x^2 + A\partial_x)Xe^{inx} = n^2\left(B + \frac{i}{n}A\right)Xe^{inx}
$$

Spectrum of −*B*∂ 2 *^x* + *A*∂*^x*

$$
Sp(-B\partial_x^2 + A\partial_x) = \left\{ n^2 Sp\left(B + \frac{i}{n}A\right) \right\}
$$

Perturbation theory

 λ_{nk} eigenvalue of $B + \frac{i}{n}A$. λ_k eigenvalue of *B*: $\lambda_{nk} \to \lambda_k \in \mathsf{Sp}(B)$

- \cdot If $\lambda_k \neq 0$, $n^2 \lambda_{nk} \underset{n \to +\infty}{\sim} n^2 \lambda_k$: parabolic frequencies
- \cdot If $\lambda_k = 0$, $n^2 \lambda_{nk} \underset{n \to +\infty}{\sim} in\mu_k$: hyperbolic frequencies
- Free solutions: $=\sum X_{nk}e^{inx-n^2\lambda_{nk}t}\approx \sum X_{nk}e^{inx-n^2\lambda_kt}+\sum X_{nk}e^{inx-in\mu_kt}$ parabolic hyperbolic
- Well-posed if $\Re(\lambda_k) > 0$ and $\mu_k \in \mathbb{R}$
- Not null-controllable in small time

Control Strategy 88 and 200 million and 200 million and 38

Decouple and control

Control Strategy 88 and 200 million and 200 million and 38

Decouple and control

Decouple and control

• For *uh*, find *u^p* that controls parabolic frequencies in time *T*

 \cdot For u'_{p} , find u'_{p} that controls the hyperbolic frequencies in time *T*

Decouple and control

- For *up*, find *u^h* that controls the hyperbolic frequencies in time *T*
- If both steps agree, OK
- Make the two steps agree by choosing *u^p* smooth and using the Fredholm alternative (on a finite codimension subspace)

Decouple and control

- \cdot For \dot{u}_p , find \dot{u}_h that controls the hyperbolic frequencies in time *T*
- If both steps agree, OK
- Make the two steps agree by choosing *u^p* smooth and using the Fredholm alternative (on a finite codimension subspace)
- Step 1: null-controllability of a parabolic equation in time *T* − *T* ⁰ > 0
- Step 2: exact controllability of a perturbed transport equation in time *T* 0 . Ok if $T' > T^*$.

Decouple and control

- \cdot For \dot{u}_p , find \dot{u}_h that controls the hyperbolic frequencies in time *T*
- If both steps agree, OK
- Make the two steps agree by choosing *u^p* smooth and using the Fredholm alternative (on a finite codimension subspace)
- Step 1: null-controllability of a parabolic equation in time *T* − *T* ⁰ > 0
- Step 2: exact controllability of a perturbed transport equation in time *T* 0 . Ok if $T' > T^*$.
- Deal the finite dimensional subspaces that are left: compactness-uniqueness

Systems of arbitrary size

- Strategy as described until now: Lebeau-Zuazua (1998) for linear systems of thermoelasticity (coupled heat-wave)
- Our work: generalize for systems of arbitrary size

Systems of arbitrary size

- Strategy as described until now: Lebeau-Zuazua (1998) for linear systems of thermoelasticity (coupled heat-wave)
- Our work: generalize for systems of arbitrary size
- Difficulty: eigenvalues and eigenvectors $B + \frac{i}{n}A$ can behave badly as $n \rightarrow +\infty$
- Solution: don't use eigenvectors nor eigenvalues
- We use *total eigenprojections*: sum of eigenprojections associated to eigenvalues that are close to each other (Kato's perturbation theory…)

 $-\frac{1}{2}$ 2*i*π l
I Γ (*M* − *z*) [−]¹ d*z* = Eigenprojection on eigenspaces associated to eigenvalues of *M* lying inside Γ

• Kato's *reduction process*

[Conclusion](#page-22-0)

Parabolic-transport \simeq transport

• null-controllable iff transport is controllable

Parabolic-transport \simeq transport

• null-controllable iff transport is controllable

Open problems

- domain other that T?
- less controls than equations?
- non-constant coefficient?
- unique continuation?

That's all folks!