Quadratic Obstruction for the Local Controllability of
a Water-Tank System and the KdV Equation

In collaboration with Jean-Michel Coron and Hoai-Minh Nguyen

Armand Koenig
31 May 2022

Workshop TRECOS 2022



Introduction



Small-time Local Controllability 2
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Small-time Local Controllability
X = f(X,u) with f(0,0) = 0.
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Small-time Local Controllability

(

Small-time Local Controllability

X =f(X,u) with (0,0) = 0. For € > 0, does there exists n > 0 such that if
IT| <€ [Xo| <, [X7] <n, we can find [u] <o,y < € such that X(T) = X7?
Theorem

Small-time local controllability does hold if the linearized equation is
null-controllable.

The converse is not true.
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A simple quadratic obstruction

X1 =u . -
. X, > 0: no controllability.
Xy = X3

A quadratic obstruction in small time

Xi=u If %2(0) = xoT) = 0, 32 < (T/m)2 [ 5
X = X4 (Poincaré). If T is small, x3(T) > x3(0): no
X3 =X} — X3 small-time controllabillity

Another small-time obstruction?

).ﬁ =u ) o )
) Small-time local controllability... but not if
>_<2 ke we ask [Uwne < 1!

X3 =X + X5

[Beauchard-Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems, 2018,...]
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Burgers Equation

Of = Ouf +fof = u(t), (t,x) €(0,T)x(0,1)
Nonlinear equation not small-time locally controllable. [marbach 2018]

Schrodinger equation with bilinear controls

Iatf = _8)%f - U(t)/_},(X)f, (t>X) € (07 T) X (071)
For some p, local controllability around the ground state in large enough time,
but no small-time local controllability. [Beauchard-Morancey 2014, Bournissou 2021 ... (see talk

this afternoon)]

Nonlinear heat equation with bilinear controls

atf = _aff - U(t)rUL (t,X) € (07 T) X (071)
For some nonlinearities T, no small-time local controllability (and/or other
weird behaviour). [Beauchard-Marbach 2018]



Control of a Water-Tank



The Water-Tank

The water-tank system

OtH + 0y (VH) = 0, (t,x) € (0,T) x (0,L)
OV + Ok(gH + v¥2) = —u(t),  (t,x) € (0,T) x (0,L)
v(t,0) =v(t,L)=0 te(0,T)
D(t) = u(t) te(0,7)
v(t, x)
H(t, x)
D(t)




The Water-Tank

The water-tank system

OtH + 0y (VH) = 0, (t,x) € (0,T) x (0,L)
OV + Ok(gH + v¥2) = —u(t),  (t,x) € (0,T) x (0,L)
v(t,0) =v(t,L)=0 te(0,7)
D(t) = u(t) te(0,T)
v(t, x)
H(t, x)
D(t)

Linearized equation around H = Heq, v = 0

0th + HeqOxv = 0, (t,x) € (0,T) x (0,L)

OV + goxh = —u(t), (t,x) € (0,T) x (O,L)

v(t,0) =v(t,L) =0 te(0,7)
h(t,L —x) = —h(t,x), v(t,L — x) = v(t,x); not controllable. But moving the tank
and such the water is still at the start and end is possible if T > T, = L/,/gHeq.



Local Controllability for the Water-Tank? 7

Theorem (Control using the return method, Coron 2002)
Local controllability il large time: there eists T > 0, n > 0 such that if

|[Ho = ¢t + [voler <,
[Hi = e + il <,
|D1 — Do| <7

then there exists a trajectory such that H(t = 0) = Ho, H(t =T)= H1,
v(t = 0) = vp, v(t =T) = vy, D(0) = Dy, D(T) = Ds, D(0) = D(T)
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Theorem (Control using the return method, Coron 2002)
Local controllability il large time: there eists T > 0, n > 0 such that if

|H0 — 1‘@ + ‘V0|C1 <mn,
[Hi = 1o + [valer <,
|D1 — Dol <7

then there exists a trajectory such that H(t = 0) = Ho, H(t =T)= H1,
v(t = 0) = vo, v(t = T) = vy, D(0) = Dy, D(T) = Dy, D(0) = D(T) =

Theorem (Lack of local controllability when the time is not large enough,
Coron-K-Nguyen 2021)

For T < 2T,, lack of local controllaility with controls small in C°: there exists
n > 0suchthatif Ht=0)=H({t=T) =Heq V(t=0)=v(t=T) =0,

D(0) = D(T) = 0, and if |u|co < 7, then u = 0.

Proof strategy: (H,v) ~ linearized + quadratic, and the quadratic term is
> clulf-
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Rescalling

L=1Heq=19g=1T.=1.

Linéarised equation
8th1 4+ 0w =0
Ovq + Oxhy = —U(t)
V](t,O) = Vj(t,1) =10
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Rescalling
L:1yHeq:1,g:1yT*:1.

Quadratic term
8th2 + vy = —8X(h1V1)
vy + Ochy = —06,(Vi/2)
Vz(t7 0) = V2(t71) =0

Lemma

(ha(T, ), @) + (va(T, ), %) = / KT,0,5(51, S2)U(S1)u(S2) dss ds;

(0,717

for some explicitly computable kernel Kt 4.
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Formula for the kernel (do not read)
With ®(x) = (¢(x) +1(x))/2 for 0 < x < 1Tand (¢(—x) —(—x))/2 for =1 < x < 0,

2K7,6,4(51,52) =

0
/d>(s + T —55)ds +2(T — 5)(T — 55) — 4(T — 55)(T — 1)

—2T+42s;
if2T —1<s51+5, < 2T

2—2T+5,+51
/ S(s =5+ T)ds+ (4T —1—35, —5)D(T — 5) — (14 2T — 35, + 51)P(T — 59)
S—$51

if2T —2<s1+5, < 2T —1

0
/cb(s +T—=5)ds+ (1+2T = 25)P(T — $3) — (=1 + 4T — 45,)P(T — 59)
21-2T+2s;
if2T —3<51+5, <2T -2

4—=2T+5,+51
/ O(S+T—5)ds+ (=24 4T =35, —S1)H(T —S2) — (24 2T — 353+ 51)Pp(T — <
S

2—51

SI2T —4 <S1+5,<2T -3



Kernel for the Quadratic Approximation

Lemma

d(x) = (o(x) +¥(x))/2 for 0 < x < 1and (¢(—x) —¥(—x))/2 for =1 < x < 0. If
1< T < 2 and if the control u steers the linearized equation from 0 to 0 (apart
from maybe moving the tank),

(ha(T,-), @) + (va(T, ), 0) = /[0 . K;?g,w(shsz)u(sw)u(sz) ds;ds;

with

3 _ _
K%i(;’w(Sq,Sz) = 5(1 = |52 = 51‘) (q)(T — 51V 52) = CD(T — 5 /\52))



Coercivity of the Kernel

Choice of ¢:
® 1-periodic, ®(s) = s fors € [1,T].

3
K4 (s1,52) = S(=ls2 sl + (s2 - s1)%)

Lemma

If [ "' u(s)ds = 0, and U(s) = [ u(s) ds/,

T—1 T—1 2
/[Olﬁ?%jy(sq,sz)u(sq)u(sz)ds1 ds, = 3/(U(s))2d5 —.g (/O U(s)ds) .

0

Proof.
Integrate by parts in sy and s;. Os,s, K;‘fg’w = 305,25, — 3. O



Coercivity of the Kernel

Choice of ¢:
® 1-periodic, ®(s) = s fors € [1,T].

3
K3y (51,52) = 5(=ls2 = 51l + (52 = 1))
Lemma

If [ "' u(s)ds = 0, and U(s) = [ u(s) ds/,

-1 -1 ?
/[Olﬁ?%jy(sq,sz)u(sq)u(sz)ds1 ds, = 3/(U(s))2ds —.g (/0 U(s)ds> .

0

Proof.
Integrate by parts in sy and s;. Os,s, K;‘fg’w = 305,25, — 3. O
Proposition

For1<T<2and U(s) = [, u(s")ds’

(ha(T, ), 8) + (va(T, ), %) = 3(2 — MU 0.7—v)



Nonlinear Equation

The situation so far
© (h,v) = (h,v1) + (h2,v2)
S—— S—_——

linearinu  quadraticin u
- If (hy,wv1)(T,-)=0and 1< T < 2, some scalar product (hy,v,)(T,") is
> c|U[2.



Nonlinear Equation

The situation so far
© (h,v) = (h,v1) + (h2,v2)
S—— S—_——

linearinu  quadraticin u
- If (hy,wv1)(T,-)=0and 1< T < 2, some scalar product (hy,v,)(T,") is
> c|U[2.

Proof of lack of local controllability.
- If u steers the nonlinear equation from 0 to 0, find & close to u that steers
the linearized equation from 0 to 0: |U — U],z < C|U|2|u|co.
= |(h,v)(u) = (1, va)(u) = (h2, v2)(U)l-2 < ClUIG |ulco
- If |u|co is small enough, the error between (h,v)(u) and (h,, v>)(0) cannot
counter the positivity of (hy(0,t,-), @) + (v2(0, t,-), ). O



Control of the KdV Equation




KdV Equation

KdV equation
Oy + Oy + &Ry +ydy =0, (t,x) € (0,T) x (0,1)
y(t,0) = y(t,L) = 0,dky(t,L) = u(t) te(0,7)

KdV equation linearized around 0
8ty1 + 8)()/1 + a§y1 =0, (LX) € (O’ T) X (07 L)
yi(t, 0) = ya(t, L) = 0,0y (t, L) = u(t) te(0,7)



KdV Equation

KdV equation
Oy + 0wy + &Ry +ydy =0, (t,x) € (0,T) x (0,L)
y(t,0) =y(t,L) =0,0y(t,L) =u(t) te(0,T)

KdV equation linearized around 0
aty‘l + 8><y1 +a§y1 = Oa (tvx) € (OaT) X (OL)
Va(t, 0) = ya(t, L) = 0, yn(t, L) = u(t) te(0,7)

Theorem (Rosier 1997)

The linearized KdV equation is controllable in some time (equivalently in

2 2
arbitrarily small time) iff L ¢ N == {27r R+ R+ E2

= (ke (N*)Z}.

If L € N, there is some finite dimensional unreachable space M.



Control of the nonlinear equation

Theorem (Rosier 1997)
If L ¢ N, the nonlinear KdV equation is small-time local controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2m\/ ®*EEL and that k = |, the
nonlinear KdV equation is small-time local controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)
If L € N, there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.



Control of the nonlinear equation

Theorem (Rosier 1997)
If L ¢ N, the nonlinear KdV equation is small-time local controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2m\/ ®*EEL and that k = |, the
nonlinear KdV equation is small-time local controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If L € N, there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.

Theorem (Coron K Nguyen 2020)

If kR # | € N*, L =2my /KL and 2k + [ ¢ 3N, lack of small-time local
controllable of the nonlinear KdV equation for H* initial conditions with
controls small in H'(0, T).



Quadratic Approximation

Order 2
3d/1 +8XyW +a)§y1 = 0, (th) € (OT) X (OL)
y1(t0):y1(tL):Ov 8qu(t,L):U(t) tE(O,T)

Lemma

If dim(M) = 2, we identify M ~ C, and then for some explicit p € R and
function ¢.

L '
y2|M(t):/O /0yj(S,X)ZeIP(t_S)(b(X)dXdS.



Quadratic Approximation

Order 2
A2 + OuYa + Y2 = —Y10u, (t,x) € (0,T) x (0,L)
Ya(t,0) = ya(t, L) = Oxya(t, L) =0 te(0,T)

Lemma
If dim(M) = 2, we identify M ~ C, and then for some explicit p € R and
function ¢.

L '
y2|M(t):/O /0yj(S,X)ZeIP(t_S)(b(X)dXdS.



Coercivity property

Theorem

If L= 2my/ AL with 2k + [ ¢ 3N, if T is small and if u steers y, from 0 to 0,
’ L T ¢ ) !
Vom = / / yi(s,x)2ePT=5)(x) dx ds = EN(u)?(1 + O(T"*))
0 0
where E € C and N(u) ~ ||u||y—2/3-

Proof.
- Take Fourier transform in t. For some explicitly computable function A(x, 2),
§(2,%) = 8(2)A(Z,X)
- Paley-Wiener: if, u steers the linearized equation from 0 to 0 then & and
A(-,x)0(-) are entire and |0(2)| + |0(2)8xA(z, 0)| < Ce"S@I,
- Computations )y :/CI(S)MB(S)dS, B(S) v E|s|=4/3

* In the integral above, the part for [s| < m is < CmT"?||u||?_,,; (we use the

Paley-Wiener property here). O



Non-linear Equation

End of the proof of the lack of local controllability

- The coercivity property tells us that the second order “drifts” in the
non-reachable space M.

- Choose yq along that direction, assume you can steer it to 0

- This control is close to another control that steers the linearized equation
from0to0

- Estimating the difference between the non linear solution and the
second-order approximation

- Quadratic drift bigger than the error (if control small in regular enough
norm) O



Conclusion
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Conclusion

Water-tank
- Atrajectory which is natural for the water-tank is possible for the
linearized equation but not for the nonlinear equation.

- Minimal time for the local-controllability to hold?

Kdv
- For some critical lengths, lack of small-time local controllability for
controls small in H'.
- Small-time local controllability with less regular controls?

- Minimal time for local-controllability?

That's all folks!



Bonus: Coercivity of an arbitrary
scalar product for the water tank




Coercivity of a class of quadratic forms

Question
Coercivity of Qy:

Qu(u) = /[a " u(s)u(s2)(1+ €lsy — s1|) (W(s1 A S2) — W(s1V'sy)) dsy ds,?

(with W = —&(T —s), Qu = (¥, order 2 for the water-tank).)



Coercivity of a class of quadratic forms

Question
Coercivity of Qy:

Qu(u) = /[a " u(s)u(s2)(1+ €lsy — s1|) (W(s1 A S2) — W(s1V'sy)) dsy ds,?

(with W = —&(T —s), Qu = (¥, order 2 for the water-tank).)

Lemma
Vel VW >c>0. Then,
Qu(U') > a|U|% for every U € Hy(a, b)
iff
/b o Iy
V(s ds/ ——ds<(b—a+e
i (s) V) ( )

Proof.
Integrate by parts; consider the resulting formula as a quadratic form on

L?(W’(s) ds); see that on a stable space with codimension 2, Qy = Identity;
compute explicitly the 2 x 2 matrix on the orthogonal and study its
positivity.
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