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Small-time Local Controllability 2

0

Small-time Local Controllability
Ẋ = f (X,u) with f (0, 0) = 0.

For ε > 0, does there exists η > 0 such that if
|T| < ε, |X0| < η, |XT | < η, we can find |u|L∞(0,T) < ε such that X(T) = XT?

Theorem
Small-time local controllability does hold if the linearized equation is
null-controllable.

The converse is not true.
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Ẋ = f (X,u) with f (0, 0) = 0. For ε > 0

, does there exists η > 0 such that if
|T| < ε, |X0| < η, |XT | < η, we can find |u|L∞(0,T) < ε such that X(T) = XT?

Theorem
Small-time local controllability does hold if the linearized equation is
null-controllable.

The converse is not true.



Small-time Local Controllability 2

0

ε

η

Small-time Local Controllability
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A simple quadratic obstruction{
ẋ1 = u
ẋ2 = x21

ẋ2 ≥ 0: no controllability.

A quadratic obstruction in small time
ẋ1 = u
ẋ2 = x1
ẋ3 = x21 − x22

If x2(0) = x2(T) = 0,
∫ T
0 x

2
2 ≤ (T/π)2

∫ T
0 ẋ

2
2

(Poincaré). If T is small, x3(T) ≥ x3(0): no
small-time controllabillity

Another small-time obstruction?
ẋ1 = u
ẋ2 = x1
ẋ3 = x31 + x22

Small-time local controllability… but not if
we ask |u|W1,∞ � 1 !

[Beauchard-Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems, 2018,…]
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Burgers Equation
∂tf − ∂xxf + f∂xf = u(t), (t, x) ∈ (0, T)× (0, 1)

Nonlinear equation not small-time locally controllable. [Marbach 2018]

Schrödinger equation with bilinear controls
i∂tf = −∂2x f − u(t)µ(x)f , (t, x) ∈ (0, T)× (0, 1)

For some µ, local controllability around the ground state in large enough time,
but no small-time local controllability. [Beauchard-Morancey 2014, Bournissou 2021 … (see talk
this afternoon)]

Nonlinear heat equation with bilinear controls
∂tf = −∂2x f − u(t)Γ[f ], (t, x) ∈ (0, T)× (0, 1)

For some nonlinearities Γ, no small-time local controllability (and/or other
weird behaviour). [Beauchard-Marbach 2018]



Control of a Water-Tank
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The water-tank system
∂tH+ ∂x(vH) = 0, (t, x) ∈ (0, T)× (0, L)
∂tv + ∂x(gH+ v2/2) = −u(t), (t, x) ∈ (0, T)× (0, L)
v(t, 0) = v(t, L) = 0 t ∈ (0, T)
D̈(t) = u(t) t ∈ (0, T)

H(t, x)

v(t, x)

D(t)

Linearized equation around H = Heq, v = 0
∂th+ Heq∂xv = 0, (t, x) ∈ (0, T)× (0, L)
∂tv + g∂xh = −u(t), (t, x) ∈ (0, T)× (0, L)
v(t, 0) = v(t, L) = 0 t ∈ (0, T)

h(t, L− x) = −h(t, x), v(t, L− x) = v(t, x); not controllable. But moving the tank
and such the water is still at the start and end is possible if T > T∗ = L/

√
gHeq.
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Theorem (Control using the return method, Coron 2002)
Local controllability il large time: there eists T > 0, η > 0 such that if

|H0 − 1|C1 + |v0|C1 < η,

|H1 − 1|C1 + |v1|C1 < η,

|D1 − D0| < η

then there exists a trajectory such that H(t = 0) = H0, H(t = T) = H1,
v(t = 0) = v0, v(t = T) = v1, D(0) = D0, D(T) = D1, Ḋ(0) = Ḋ(T) = 0.

Theorem (Lack of local controllability when the time is not large enough,
Coron-K-Nguyen 2021)
For T < 2T∗, lack of local controllaility with controls small in C0: there exists
η > 0 such that if H(t = 0) = H(t = T) = Heq, v(t = 0) = v(t = T) = 0,
Ḋ(0) = Ḋ(T) = 0, and if |u|C0 < η, then u = 0.

Proof strategy: (H, v) ≈ linearized+ quadratic, and the quadratic term is
≥ c|u|2H−1 .
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Rescalling
L = 1, Heq = 1, g = 1, T∗ = 1.

Linéarised equation
∂th1 + ∂xv1 = 0
∂tv1 + ∂xh1 = −u(t)
v1(t, 0) = v1(t, 1) = 0

Lemma

(h2(T, ·), φ) + (v2(T, ·), ψ) =
∫
[0,T]2

KT,φ,ψ(s1, s2)u(s1)u(s2)ds1 ds2

for some explicitly computable kernel KT,φ,ψ .
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Quadratic term
∂th2 + ∂xv2 = −∂x(h1v1)
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Formula for the kernel (do not read)
With Φ(x) = (φ(x)+ψ(x))/2 for 0 < x < 1 and (φ(−x)−ψ(−x))/2 for −1 < x < 0,
2KT,φ,ψ(s1, s2) =

∫ 0

−2T+2s2
Φ(s+ T − s2)ds+ 2(T − s2)Φ(T − s2)− 4(T − s2)Φ(T − s1)

if 2T − 1 < s1 + s2 < 2T∫ 2−2T+s2+s1

s2−s1
Φ(s− s2 + T)ds+ (4T − 1− 3s2 − s1)Φ(T − s2)− (1+ 2T − 3s2 + s1)Φ(T − s1)

if 2T − 2 < s1 + s2 < 2T − 1∫ 0

21−2T+2s2
Φ(s+ T − s2)ds+ (1+ 2T − 2s2)Φ(T − s2)− (−1+ 4T − 4s2)Φ(T − s1)

if 2T − 3 < s1 + s2 < 2T − 2∫ 4−2T+s2+s1

s2−s1
Φ(s+ T − s2)ds+ (−2+ 4T − 3s2 − s1)φ(T − s2)− (2+ 2T − 3s2 + s1)φ(T − s1)

si 2T − 4 < s1 + s2 < 2T − 3



Kernel for the Quadratic Approximation 10

Lemma
Φ(x) = (φ(x) + ψ(x))/2 for 0 < x < 1 and (φ(−x)− ψ(−x))/2 for −1 < x < 0. If
1 < T < 2 and if the control u steers the linearized equation from 0 to 0 (apart
from maybe moving the tank),

(h2(T, ·), φ) + (v2(T, ·), ψ) =
∫
[0,T−1]2

KredT,φ,ψ(s1, s2)u(s1)u(s2)ds1 ds2

with

KredT,φ,ψ(s1, s2) =
3
2
(1− |s2 − s1|)

(
Φ(T − s1 ∨ s2)− Φ(T − s1 ∧ s2)

)



Coercivity of the Kernel 11

Choice of Φ:
Φ 1-periodic, Φ(s) = s for s ∈ [1, T].

KredT,φ,ψ(s1, s2) =
3
2
(−|s2 − s1|+ (s2 − s1)2)

Lemma

If
∫ T−1
0 u(s)ds = 0, and U(s) =

∫ s
0 u(s

′)ds′,∫
[0,T−1]2
KredT,φ,ψ(s1, s2)u(s1)u(s2)ds1 ds2 = 3

∫ T−1

0
(U(s))2 ds− 3

(∫ T−1

0
U(s)ds

)2

.

Proof.
Integrate by parts in s1 and s2. ∂s1s2KredT,φ,ψ = 3δs1=s2 − 3.

Proposition
For 1 < T < 2 and U(s) =

∫ s
0 u(s

′)ds′

(h2(T, ·), φ) + (v2(T, ·), ψ) ≥ 3(2− T)|U|2L2(0,T−1)
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Nonlinear Equation 12

The situation so far

• (h, v) ≈ (h1, v1)︸ ︷︷ ︸
linear in u

+ (h2, v2)︸ ︷︷ ︸
quadratic in u

• If (h1, v1)(T, ·) = 0 and 1 < T < 2, some scalar product (h2, v2)(T, ·) is
≥ c|U|2L2 .

Proof of lack of local controllability.

• If u steers the nonlinear equation from 0 to 0, find ũ close to u that steers
the linearized equation from 0 to 0: |U− Ũ|L2 ≤ C|U|L2 |u|C0 .

• |(h, v)(u)− (h1, v1)(u)− (h2, v2)(u)|H−2 ≤ C|U|2L2 |u|C0
• If |u|C0 is small enough, the error between (h, v)(u) and (h2, v2)(ũ) cannot
counter the positivity of (h2(ũ, t, ·), φ) + (v2(ũ, t, ·), ψ).
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Control of the KdV Equation



KdV Equation 13

KdV equation{
∂ty + ∂xy + ∂3xy + y∂xy = 0, (t, x) ∈ (0, T)× (0, L)
y(t, 0) = y(t, L) = 0, ∂xy(t, L) = u(t) t ∈ (0, T)

KdV equation linearized around 0{
∂ty1 + ∂xy1 + ∂3xy1 = 0, (t, x) ∈ (0, T)× (0, L)
y1(t, 0) = y1(t, L) = 0, ∂xy1(t, L) = u(t) t ∈ (0, T)

Theorem (Rosier 1997)
The linearized KdV equation is controllable in some time (equivalently in

arbitrarily small time) iff L /∈ N :=

{
2π
√
k2 + kl+ l2

3
, (k, l) ∈ (N∗)2

}
.

If L ∈ N , there is some finite dimensional unreachable spaceM.
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Control of the nonlinear equation 14

Theorem (Rosier 1997)
If L /∈ N , the nonlinear KdV equation is small-time local controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as L = 2π
√

k2+kl+l2
3 and that k = l, the

nonlinear KdV equation is small-time local controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)
If L ∈ N , there exists T > 0 such that the nonlinear KdV equation is locally
controllable in time T.

Theorem (Coron K Nguyen 2020)

If k 6= l ∈ N∗, L = 2π
√

k2+kl+l2
3 and 2k+ l /∈ 3N, lack of small-time local

controllable of the nonlinear KdV equation for H3 initial conditions with
controls small in H1(0, T).
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Order 2{
∂ty1 + ∂xy1 + ∂3xy1 = 0, (t, x) ∈ (0, T)× (0, L)
y1(t, 0) = y1(t, L) = 0, ∂xy1(t, L) = u(t) t ∈ (0, T)

Lemma
If dim(M) = 2, we identifyM ≈ C, and then for some explicit p ∈ R and
function φ.

y2|M(t) =
∫ L

0

∫ t

0
y1(s, x)2eip(t−s)φ(x)dx ds.
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Order 2 {
∂ty2 + ∂xy2 + ∂3xy2 = −y1∂xy1, (t, x) ∈ (0, T)× (0, L)
y2(t, 0) = y2(t, L) = ∂xy2(t, L) = 0 t ∈ (0, T)
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If dim(M) = 2, we identifyM ≈ C, and then for some explicit p ∈ R and
function φ.

y2|M(t) =
∫ L

0
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Coercivity property 16

Theorem

If L = 2π
√

k2+kl+l2
3 with 2k+ l /∈ 3N, if T is small and if u steers y1 from 0 to 0,

y2|M =

∫ L

0

∫ T

0
y1(s, x)2eip(T−s)φ(x)dx ds = EN(u)2(1+ O(T1/4))

where E ∈ C and N(u) ∼ ‖u‖H−2/3 .

Proof.

• Take Fourier transform in t. For some explicitly computable function Λ(x, z),

ŷ(z, x) = û(z)Λ(z, x)

• Paley-Wiener: if, u steers the linearized equation from 0 to 0 then û and
Λ(·, x)û(·) are entire and |û(z)|+ |û(z)∂xΛ(z, 0)| ≤ CeT|=(z)|.

• Computations y2|M =

∫
û(s)û(s− p)B(s)ds, B(s) ∼

s→±∞
E|s|−4/3

• In the integral above, the part for |s| ≤ m is ≤ CmT1/2‖u‖2H−2/3 (we use the
Paley-Wiener property here).



Non-linear Equation 17

End of the proof of the lack of local controllability

• The coercivity property tells us that the second order “drifts” in the
non-reachable spaceM.

• Choose y0 along that direction, assume you can steer it to 0
• This control is close to another control that steers the linearized equation
from 0 to 0

• Estimating the difference between the non linear solution and the
second-order approximation

• Quadratic drift bigger than the error (if control small in regular enough
norm)



Conclusion



Conclusion 18

Water-tank

• A trajectory which is natural for the water-tank is possible for the
linearized equation but not for the nonlinear equation.

• Minimal time for the local-controllability to hold?

KdV

• For some critical lengths, lack of small-time local controllability for
controls small in H1.

• Small-time local controllability with less regular controls?
• Minimal time for local-controllability?

That’s all folks!
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Bonus: Coercivity of an arbitrary
scalar product for the water tank



Coercivity of a class of quadratic forms 19

Question
Coercivity of QΨ:

QΨ(u) =
∫
[a,b]2

u(s1)u(s2)(1+ ε|s2 − s1|)
(
Ψ(s1 ∧ s2)−Ψ(s1 ∨ s2)

)
ds1 ds2?

(with Ψ = −Φ(T − s), QΨ = 〈Φ,order 2 for the water-tank〉.)

Lemma
Ψ ∈ C1, Ψ′ ≥ c > 0. Then,

QΨ(U′) ≥ α|U|2L2 for every U ∈ H10(a,b)
iff ∫ b

a
Ψ′(s)ds

∫ b

a

1
Ψ′(s)

ds < (b− a+ ε−1)2

Proof.
Integrate by parts; consider the resulting formula as a quadratic form on
L2(Ψ′(s)ds); see that on a stable space with codimension 2, QΨ = Identity;
compute explicitly the 2× 2 matrix on the orthogonal and study its
positivity.
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(with Ψ = −Φ(T − s), QΨ = 〈Φ,order 2 for the water-tank〉.)

Lemma
Ψ ∈ C1, Ψ′ ≥ c > 0. Then,

QΨ(U′) ≥ α|U|2L2 for every U ∈ H10(a,b)
iff ∫ b

a
Ψ′(s)ds

∫ b

a

1
Ψ′(s)

ds < (b− a+ ε−1)2

Proof.
Integrate by parts; consider the resulting formula as a quadratic form on
L2(Ψ′(s)ds); see that on a stable space with codimension 2, QΨ = Identity;
compute explicitly the 2× 2 matrix on the orthogonal and study its
positivity.
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