Geometric control conditions for the fractional heat equation

Joint work with Paul Alphonse

Armand Koenig

1st August 2023

IMT, Université Toulouse III - Paul Sabatier

Introduction

Null-controllability of PDEs

Definition (Null-controllability of the heat equation on ω in time T)

For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0, T] \times \omega)$ such that the solution f of: $\partial_t f - \Delta f = \mathbf{1}_{\omega} u, \quad f_{|\partial\Omega} = 0, \quad f(0) = f_0$ satisfies $f(T, \cdot) = 0$ on Ω .

Definition (Null-controllability of the heat equation on ω in time T)

For every initial condition $f_0 \in L^2(\Omega)$, there exists a control $u \in L^2([0,T] \times \omega)$ such that the solution f of: $\partial_t f - \Delta f = \mathbf{1}_{\omega} u, \quad f_{|\partial\Omega} = 0, \quad f(0) = f_0$ satisfies $f(T, \cdot) = 0$ on Ω .

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995, Fursikov & Imanuvilov 1996))

 Ω a C² connected bounded open subset of \mathbb{R}^n , ω a non-empty open subset of Ω , and T > 0. The heat equation is null-controllable on ω in time T.

Heat equation on the whole space

Definition ((γ , r)**-thick set)** ω is (γ , r)**-thick if for all** x,

 $|B(x,r) \cap \boldsymbol{\omega}| \geq \gamma |B(x,r)|$

Theorem (Null-controllability of the heat equation on \mathbb{R}^n (Egidi & Veselic 2018, Wang, Wang, Zhang & Zhang 2019))

 $\omega \subset \mathbb{R}^n$ thick, and T > 0. The heat equation on \mathbb{R}^n is null-controllable on ω in time T.

Heat equation on the whole space

Definition ((γ , r)**-thick set)** ω is (γ , r)**-thick if for all** x,

 $|B(x,r) \cap \omega| \geq \gamma |B(x,r)|$

Theorem (Null-controllability of the heat equation on \mathbb{R}^n (Egidi & Veselic 2018, Wang, Wang, Zhang & Zhang 2019))

 $\omega \subset \mathbb{R}^n$ thick, and T > 0. The heat equation on \mathbb{R}^n is null-controllable on ω in time T.

Theorem (Kovrijkine's inequality)

If
$$\omega$$
 is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

If
$$\omega$$
 is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \ \|e^{T\Delta}g_0\|_{L^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{L^2([0,T]\times\omega)}^2$

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \|e^{T\Delta}g_0\|_{L^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{L^2([0,T]\times\omega)}^2$

Lebeau-Robbiano's method

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \|e^{T\Delta}g_0\|_{L^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{L^2([0,T]\times\omega)}^2$

Lebeau-Robbiano's method

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \|e^{T\Delta}g_0\|_{L^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{L^2([0,T]\times\omega)}^2$

Lebeau-Robbiano's method

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \|e^{T\Delta}g_0\|_{l^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{l^2([0,T]\times\omega)}^2$

Lebeau-Robbiano's method

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \|e^{T\Delta}g_0\|_{l^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{l^2([0,T]\times\omega)}^2$

Lebeau-Robbiano's method

If ω is (γ, r) -thick and $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq \left(\frac{K_n}{\gamma}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$

Proposition (Duality null-controllability/observability) Null-controllability in time $T \iff \forall g_0, \|e^{T\Delta}g_0\|_{L^2(\mathbb{R}^n)}^2 \leq C \|e^{t\Delta}g_0\|_{L^2([0,T]\times\omega)}^2$

Lebeau-Robbiano's method

Fractional heat equation

$$\widehat{|D_x|^s}f(\xi) = |\xi|^s \widehat{f}(\xi)$$

Fractional heat equation

$$(\partial_t + |D_x|^{\mathsf{s}})f(t,x) = \mathbf{1}_{\boldsymbol{\omega}}u(t,x)$$
$$\widehat{|D_x|^{\mathsf{s}}f}(\xi) = |\xi|^{\mathsf{s}}\widehat{f}(\xi)$$

Theorem (Case s > 1 **(Alphonse & Bernier 2020, Alphonse & Martin 2023))** The fractional heat equation is null-controllable on ω in time $T \iff \omega$ is thick

Theorem (Case s < 1 (K 2020))

The fractional heat equation is null-controllable on ω in time $T \Longrightarrow \omega$ is dense

Question

How dense must be ω to ensure the null-controllability of the fractional heat equation?

Null-controllability of the weakly dissipative fractional heat equation

Null-controllability of the fractional heat equation

Definition (Thick set with respect to a function) $\gamma: (0, r_0] \rightarrow [0, 1]. \ \omega$ is thick with respect to γ if for all x and $0 < r \le r_0.$ $|B(x, r) \cap \omega| \ge \gamma(r)|B(x, r)|$

Theorem (Sufficient condition (Alphonse-K 2023))

Assume that ω is thick with respect to $\gamma_{\alpha}(r) := ce^{-Cr^{-\alpha}}$ for some c, C > 0 and $\alpha < s$.

The fractional heat equation is null-controllable on ω in time T

Null-controllability of the fractional heat equation

Definition (Thick set with respect to a function) $\gamma: (0, r_0] \rightarrow [0, 1]. \ \omega$ is thick with respect to γ if for all x and $0 < r \le r_0.$ $|B(x, r) \cap \omega| \ge \gamma(r)|B(x, r)|$

Theorem (Sufficient condition (Alphonse-K 2023))

Assume that ω is thick with respect to $\gamma_{\alpha}(r) := ce^{-Cr^{-\alpha}}$ for some c, C > 0 and $\alpha < s$.

The fractional heat equation is null-controllable on ω in time T

Idea of the proof

- Kovrijkine: if $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$ and $0 < r \le r_0$, $\|f\|_{L^2(\mathbb{R}^n)} \le \left(\frac{K_n}{\gamma_{\alpha}(r)}\right)^{K_n(1+r\lambda)} \|f\|_{L^2(\omega)}$
- Optimizing in r: if $\operatorname{Supp} \hat{f} \subset B(0, \lambda)$, $\|f\|_{L^2(\mathbb{R}^n)} \leq Ce^{C\lambda^{\alpha}} \|f\|_{L^2(\omega)}$
- Dissipation in $e^{-t\lambda^{s}}$: null-controllability thanks to Lebeau-Robbiano's method

Lack of null-controllability of the fractional heat equation 7

Theorem (Necessary condition (Alphonse-K 2023))

Assume that the fractional heat equation is null controllable on ω in time T. Then, for some C, c > 0, ω is dense with respect to $ce^{-Cr^{-2s/(1-s)}}$.

Lack of null-controllability of the fractional heat equation 7

Theorem (Necessary condition (Alphonse-K 2023))

Assume that the fractional heat equation is null controllable on ω in time T. Then, for some C, c > 0, ω is dense with respect to $ce^{-Cr^{-2s/(1-s)}}$.

Coherent states

$$g_{h}(t,x) := e^{-t|D_{x}|^{s}} e^{ix\xi_{0}/h - x^{2}/2h}$$
$$= c_{h,n} \int_{\mathbb{R}^{n}} e^{-(h\xi - \xi_{0})^{2}/2h + ix\xi - t|\xi|^{s}} d\xi$$

Asymptotics for coherent states

Saddle point method: $g_h(t,x) \approx c'_{h,n} e^{ix\xi_0/h - x^2/2h - t(\xi_0 + ix)^5/h^5}$.

Proof

• Null-controllability \iff observability $\implies \|g_h(T, \cdot)\|_{L^2(\mathbb{R}^n)}^2 \leq C \|g_h\|_{L^2([0,T]\times\omega)}^2$

• $e^{-2T|\xi_0|^5/h^5} \le C(\underbrace{e^{-r^2/h}}_{\text{Contribution of }|x|>r} + \underbrace{|\omega \cap B(0,r)|}_{\text{Contribution of }|x|< r}$ (plus several error terms)

• Choose h = h(r) small enough to absorb the $e^{-r^2/2h}$ into the left-hand-side

Examples of thick set with respect to a function

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}

Fraction removed: $\tau_1 = 0.5$

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}

Fraction removed: $\tau_2 = 0.25$

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}

Fraction removed: $\tau_3 = 0.125$

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}

Fraction removed: $\tau_4 = 0.0625$

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}
- $K := \bigcap_n K_n$

- Start with $K_0 = [0, 1]$.
- K_n : remove a fraction τ_n of each interval that makes K_{n-1}

K _____

$$\forall r \text{ small enough, } \overbrace{\frac{1}{24}\sum_{n \ge \log_2(3|K|/r)}}^{\geq \gamma(r) \text{ for well chosen } \tau_n} \le \inf_{x \in \mathbb{R}} \frac{|\omega \cap B(x, r)|}{|B(x, r)|}$$

That's all folks!

Heat-like equation

$$\partial_t f(t, x) + \rho(|D_x|) f(t, x) = \mathbf{1}_{\omega} u(t, x) \tag{E}_{\rho}$$

with $\rho \colon \mathbb{R}^+ \to \mathbb{C}$ measurable, $\operatorname{Re} \rho \geq 0$

Theorem

 $0 < \operatorname{Re} \rho(\xi) \xrightarrow{\xi \to +\infty} +\infty$. $\gamma_{\rho}(r) \coloneqq c_0 \exp(-c_1 \operatorname{Re} \rho(1/r)^{\alpha})$, for some $c_0 \in (0, 1)$, $c_1 > 0$ and $\alpha \in (0, 1)$. Let ω be thick relatively to γ_{ρ} . For every T > 0, the parabolic equation (E_{ρ}) is null-controllable on ω in time T.

Heat-like equation

$$\partial_t f(t, x) + \rho(|D_x|) f(t, x) = \mathbf{1}_{\omega} u(t, x) \tag{E}_{\rho}$$

with $\rho \colon \mathbb{R}^+ \to \mathbb{C}$ measurable, $\operatorname{Re} \rho \geq 0$

Theorem

Let K > 0 and $C = \{\xi \in \mathbb{C}, \operatorname{Re}(\xi) > K, |\operatorname{Im}(\xi)| < K^{-1}\operatorname{Re}(\xi)\}$. Assume

 $\rho \text{ holomorphic on } \mathcal{C} \quad \rho(\xi) \mathop{=}\limits_{|\xi| \to +\infty} o(\xi) \quad |\operatorname{Im} \rho(\xi)| \leq C \operatorname{Re} \rho(\xi) \quad \operatorname{In}(\xi) \mathop{=}\limits_{|\xi| \to +\infty} o(\operatorname{Re} \rho(\xi))$

If (E_{ρ}) is null-controllable on ω in time T > 0, $\exists \lambda > 0$

$$\frac{|\omega \cap B(x,r)|}{|B(x,r)|} \ge Cr^{-n} \exp\left(-2(T+\epsilon)\operatorname{Re}\rho\left(\frac{\lambda}{h_r}\right)\right)$$

where h_r is chosen such that $\sqrt{h_r(2T+\epsilon)\operatorname{Re}\rho\left(\frac{\lambda}{h_r}\right)} \leq r$