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Introduction



Null-controllability of PDEs 2

Ω

ω
Definition (Null-controllability of the heat equation
on ω in time T)
For every initial condition f0 ∈ L2(Ω), there exists a
control u ∈ L2([0, T]× ω) such that the solution f of:

∂tf −∆f = 1ωu, f|∂Ω = 0, f (0) = f0
satisfies f (T, ·) = 0 on Ω.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))
Ω a C2 connected bounded open subset of Rn, ω a non-empty open subset of
Ω, and T > 0. The heat equation is null-controllable on ω in time T.
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Heat equation on the whole space 3

Definition ((γ, r)-thick set)
ω is (γ, r)-thick if for all x,

|B(x, r) ∩ ω| ≥ γ|B(x, r)|

Theorem (Null-controllability of the heat equation on Rn (Egidi & Veselic
2018, Wang, Wang, Zhang & Zhang 2019))
ω ⊂ Rn thick, and T > 0. The heat equation on Rn is null-controllable on ω in
time T.

Theorem (Kovrijkine’s inequality)

If ω is (γ, r)-thick and Supp f̂ ⊂ B(0, λ), ‖f‖L2(Rn) ≤
(Kn
γ

)Kn(1+rλ)
‖f‖L2(ω)
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Lebeau & Robbiano’s method 4

Theorem (Kovrijkine’s inequality)

If ω is (γ, r)-thick and Supp f̂ ⊂ B(0, λ), ‖f‖L2(Rn) ≤
(Kn
γ

)Kn(1+rλ)
‖f‖L2(ω)

Proposition (Duality null-controllability/observability)
Null-controllability in time T ⇐⇒ ∀g0, ‖eT∆g0‖2L2(Rn) ≤ C‖et∆g0‖2L2([0,T]×ω)

Lebeau-Robbiano’s method

• Kovrijkine’s inequality =⇒ null-controllability of (∂t −∆)Πλf = Πλ1ωu
(with Πλ = projection on frequencies ≤ λ)
with ‖u‖2L2 ≤

C
T e

Cλ‖f0‖2L2

• T

T1

τ1 τ1

T2

τ2 τ2

T3

τ3 τ3

T4

τ4 τ4 · · ·τkτk
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Control of frequencies ≤ 2
(costs C

τ1
e2C‖f (T1)‖)

Free dissipation in e−4τ1
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Fractional heat equation 5

Fractional heat equation
(∂t + |Dx|s)f (t, x) = 1ωu(t, x)

|̂Dx|sf (ξ) = |ξ|s f̂ (ξ)

Theorem (Case s > 1 (Alphonse & Bernier 2020, Alphonse & Martin 2023))
The fractional heat equation is null-controllable on ω in time T ⇐⇒ ω is thick

Theorem (Case s < 1 (K 2020))
The fractional heat equation is null-controllable on ω in time T =⇒ ω is dense

Question
How dense must be ω to ensure the null-controllabilty of the fractional heat
equation?
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Null-controllability of the weakly
dissipative fractional heat
equation



Null-controllability of the fractional heat equation 6

Definition (Thick set with respect to a function)
γ : (0, r0] → [0, 1]. ω is thick with respect to γ if for
all x and 0 < r ≤ r0.

|B(x, r) ∩ ω| ≥ γ(r)|B(x, r)|

Theorem (Sufficient condition (Alphonse-K 2023))

Assume that ω is thick with respect to γα(r) := ce−Cr−α for some c, C > 0 and
α < s.
The fractional heat equation is null-controllable on ω in time T

Idea of the proof

• Kovrijkine: if Supp f̂ ⊂ B(0, λ) and 0 < r ≤ r0,

‖f‖L2(Rn) ≤
( Kn
γα(r)

)Kn(1+rλ)
‖f‖L2(ω)

• Optimizing in r: if Supp f̂ ⊂ B(0, λ), ‖f‖L2(Rn) ≤ CeCλ
α

‖f‖L2(ω)

• Dissipation in e−tλs : null-controllability thanks to Lebeau-Robbiano’s
method
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Lack of null-controllability of the fractional heat equation 7

Theorem (Necessary condition (Alphonse-K 2023))
Assume that the fractional heat equation is null controllable on ω in time T.
Then, for some C, c > 0, ω is dense with respect to ce−Cr−2s/(1−s) .

Coherent states
gh(t, x) := e−t|Dx|

s
eixξ0/h−x

2/2h

= ch,n
∫
Rn
e−(hξ−ξ0)

2/2h+ixξ−t|ξ|s dξ

Asymptotics for coherent states
Saddle point method: gh(t, x) ≈ c′h,neixξ0/h−x

2/2h−t(ξ0+ix)s/hs .

Proof

• Null-controllability⇐⇒ observability =⇒ ‖gh(T, ·)‖2L2(Rn) ≤ C‖gh‖2L2([0,T]×ω)

• e−2T|ξ0|
s/hs ≤ C(e−r

2/h︸ ︷︷ ︸
Contribution of |x|>r

+ |ω ∩ B(0, r)|)︸ ︷︷ ︸
Contribution of |x|<r

(plus several error terms)

• Choose h = h(r) small enough to absorb the e−r2/2h into the left-hand-side
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Examples of thick set with
respect to a function
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Definition (Smith-Volterra-Cantor set)
Algorithm:

• Start with K0 = [0, 1].
• Kn: remove a fraction τn of each interval that makes Kn−1

• K :=
⋂
n Kn

K0 0.00 1.00

Construction of thick set with respect to a function γ: ω = R \ K

ω

∀r small enough,

≥γ(r) for well chosen τn︷ ︸︸ ︷
1
24

∑
n≥log2(3|K|/r)

τn ≤ inf
x∈R

|ω ∩ B(x, r)|
|B(x, r)|
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Definition (Smith-Volterra-Cantor set)
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0.00 0.09 0.16 0.25 0.75 0.84 0.91 1.00

Construction of thick set with respect to a function γ: ω = R \ K

ω

∀r small enough,

≥γ(r) for well chosen τn︷ ︸︸ ︷
1
24

∑
n≥log2(3|K|/r)

τn ≤ inf
x∈R

|ω ∩ B(x, r)|
|B(x, r)|



Smith-Volterra-Cantor sets 8

Definition (Smith-Volterra-Cantor set)
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Definition (Smith-Volterra-Cantor set)
Algorithm:
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• K :=
⋂
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That’s all folks!



More general Fourier multipliers

Heat-like equation
∂tf (t, x) + ρ(|Dx|)f (t, x) = 1ωu(t, x) (Eρ)

with ρ : R+ → C measurable, Re ρ ≥ 0

Theorem

0 < Re ρ(ξ) −−−−→
ξ→+∞

+∞. γρ(r) := c0 exp(−c1 Re ρ(1/r)α), for some c0 ∈ (0, 1),

c1 > 0 and α ∈ (0, 1). Let ω be thick relatively to γρ. For every T > 0, the
parabolic equation (Eρ) is null-controllable on ω in time T.



More general Fourier multipliers

Heat-like equation
∂tf (t, x) + ρ(|Dx|)f (t, x) = 1ωu(t, x) (Eρ)

with ρ : R+ → C measurable, Re ρ ≥ 0

Theorem

Let K > 0 and C = {ξ ∈ C,Re(ξ) > K, |Im(ξ)| < K−1 Re(ξ)}. Assume

ρ holomorphic on C ρ(ξ) = o
|ξ|→+∞

(ξ) |Im ρ(ξ)| ≤ C Re ρ(ξ) ln(ξ) = o
|ξ|→+∞

(Re ρ(ξ))

If (Eρ) is null-controllable on ω in time T > 0, ∃λ > 0

|ω ∩ B(x, r)|
|B(x, r)|

≥ Cr−n exp
(
−2(T + ε) Re ρ

(
λ

hr

))

where hr is chosen such that

√
hr(2T + ε) Re ρ

(
λ

hr

)
≤ r
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