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Introduction



Null-controllability of PDEs 2

Definition (Null-controllability of the heat equation

onw intimeT)

For every initial condition fy € L?(), there exists a

control u € L([0, T] x w) such that the solution f of:
of — Af =1,u, flaa =0, f(0)=Tfo

satisfies f(T,-) = 0 on Q.
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Definition (Null-controllability of the heat equation
onw intime T)

For every initial condition fy € L?(), there exists a
control u € L([0, T] x w) such that the solution f of:

of — Af =1,u, flaa =0, f(0)=Tfo
satisfies f(T,-) = 0 on Q.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))

Q a C? connected bounded open subset of R", w a non-empty open subset of
Q, and T > 0. The heat equation is null-controllable on w in time T.



Heat equation on the whole space 3
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Theorem (Null-controllability of the heat equation on R" (Egidi & Veselic
2018, Wang, Wang, Zhang & Zhang 2019))

w C R" thick, and T > 0. The heat equation on R" is null-controllable on w in
time T.
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Theorem (Null-controllability of the heat equation on R" (Egidi & Veselic
2018, Wang, Wang, Zhang & Zhang 2019))

w C R" thick, and T > 0. The heat equation on R" is null-controllable on w in
time T.

Theorem (Kovrijkine's inequality)
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Theorem (Kovrijkine's inequality)
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Theorem (Kovrijkine's inequality)
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Proposition (Duality null-controllability/observability)
Null-controllability in time T <= Vg, ||emgo\|fQ(Rn) < C||etAQo||EZ([o,T]w)
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Theorem (Kovrijkine's inequality)
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Proposition (Duality null-controllability/observability)
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Lebeau-Robbiano’s method
- Kovrijkine's inequality = null-controllability of (0; — A)M\f = My\1,u
(with My = projection on frequencies < \)
with [[ulf. < ze“foll?:
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Theorem (Kovrijkine's inequality)
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Lebeau & Robbiano’s method A

Theorem (Kovrijkine's inequality)
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Fractional heat equation
(0 + [DxP)f (t,x) = L u(t, x)

IDAFF(€) = 1617 ()
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Fractional heat equation
(8 + D) (£, X) = Tu(t, X)
IDAIF (€) = [€FF (&)

Theorem (Case s > 1 (Alphonse & Bernier 2020, Alphonse & Martin 2023))
The fractional heat equation is null-controllable on w in time T <= w is thick

Theorem (Case s < 1 (K 2020))

The fractional heat equation is null-controllable on w in time T => w is dense

Question

How dense must be w to ensure the null-controllabilty of the fractional heat
equation?



Null-controllability of the weakly
dissipative fractional heat
equation



Null-controllability of the fractional heat equation

Definition (Thick set with respect to a function)

~v: (0,ro] = [0,1]. w is thick with respect to « if for
allxand 0 < r <rp.

[B(x, r) Nw| > ~(r)|B(x, 1)

Theorem (Sufficient condition (Alphonse-K 2023))

Assume that w is thick with respect to v,(r) = ce=“"" for some ¢,C > 0 and
a<s.

The fractional heat equation is null-controllable on w in time T



Null-controllability of the fractional heat equation

Definition (Thick set with respect to a function)

~v: (0,ro] = [0,1]. w is thick with respect to « if for
allxand 0 < r <rp.

[B(x, r) Nw| > ~(r)|B(x, 1)

Theorem (Sufficient condition (Alphonse-K 2023))

Assume that w is thick with respect to v,(r) = ce=“"" for some ¢,C > 0 and
a<s.

The fractional heat equation is null-controllable on w in time T
Idea of the proof
- Kovrijkine: if Suppf B(0,A\)and 0 < r < ry,

K Kn(14rX)
L) Wl

IFleery < (==
- Optimizing in r: if Suppf C B(0, \), If li2rey < € (If 20

Ya(r)
- Dissipation in e=*": null-controllability thanks to Lebeau-Robbiano’s
method



Lack of null-controllability of the fractional heat equation

Theorem (Necessary condition (Alphonse-K 2023))
Assume that the fractional heat equation is null controllable on w in time T
Then, for some C,c > 0, w is dense with respect to ce=¢ /"™



Lack of null-controllability of the fractional heat equation

Theorem (Necessary condition (Alphonse-K 2023))

Assume that the fractional heat equation is null controllable on w in time T.
Then, for some C,c > 0, w is dense with respect to ce=¢ /"™

Coherent states
gn(t, x) = e~ Pl gixéo/h—x/2h

— / e~ (he—&of/2n+ixe—tel ge

Asymptotics for coherent states ' i _
Saddle point method: gn(t, x) ~ cj, ,e™s/n=x/2n=He+x)/h",
Proof
- Null-controllability <= observability = ||gn(T, -)HfZ(Rn) < C||gh||f2([oﬂm)

N S 72
- e ISl < c(e="/" 41w N B(O, r)|) (plus several error terms)
Contribution of [X|>r" contribution of |x|<r

- Choose h = h(r) small enough to absorb the e="/2" into the left-hand-side



Examples of thick set with
respect to a function
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Definition (Smith-Volterra-Cantor set)
Algorithm:

- Start with Ko = [0,1].
- K,: remove a fraction 7, of each interval that makes K,_1

Ko | -
0.00 1.00
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Definition (Smith-Volterra-Cantor set)
Algorithm:

- Start with Ko = [0,1].
- K,: remove a fraction 7, of each interval that makes K,_1

Fraction removed: 4 = 0.5

0.00 0.5 0.75 1.00
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Definition (Smith-Volterra-Cantor set)
Algorithm:
- Start with Ko = [0,1].
- K,: remove a fraction 7, of each interval that makes K,_1
Fraction removed: =, = 0.25

Ky —1 f— I I R )
0.00 0.09 0.16  0.25 075  0.8% 0.91  1.00
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Definition (Smith-Volterra-Cantor set)
Algorithm:

- Start with Ko = [0,1].
- K,: remove a fraction 7, of each interval that makes K,_1
Fraction removed: 5 = 0.125

Ky —+—H—t—w



Smith-Volterra-Cantor sets 8

Definition (Smith-Volterra-Cantor set)
Algorithm:

- Start with Ko = [0,1].
- K,: remove a fraction 7, of each interval that makes K,_1

Fraction removed: 7, = 0.0625

Ky —HHHH—HHHH HHHH—HHHH—
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- K=, Kn

K
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Definition (Smith-Volterra-Cantor set)

Algorithm:
- Start with Ko = [0,1].
- K,: remove a fraction 7, of each interval that makes K,_1
- K=, Kn

K

Construction of thick set with respect to a function y: w =R\ K

>~(r) for well chosen 7,

1 . JwnB(x, )
Vr small enough, — < inf —————~
ugh, 77 > < nf B(x, 1]
n>log,(3|K|/r)



That's all folks!



More general Fourier multipliers

Heat-like equation

AF (t,X) + p(IDx)F(t,%) = 1,u(t,X) (E,)
with p: R — C measurable, Rep > 0

Theorem

0 < Rep(&) m +00. 7,(r) == coexp(—c1 Re p(1/r)*), for some ¢y € (0,1),

¢1 > 0and a € (0,1). Let w be thick relatively to ~,. For every T > 0, the
parabolic equation (E,) is null-controllable on w in time T.



More general Fourier multipliers

Heat-like equation
AF (t,X) + p(ID)F(t,%) = 1,u(t,X) (E,)
with p: R — C measurable, Rep > 0

Theorem

Let K> 0 and C = {¢ € C,Re(&) > K, [Im(&)| < K~"Re(¢)}. Assume

p holomorphicon C  p(§) = o(§) [Imp(&)| < CRep(£) In(€) = o(Re p(¢))

|€]—=+00 €] —+o00

If (E,) is null-controllable on w in time T > 0, 3A > 0

Wr/;(i();;'r) > Cr"exp (‘2(T+ €)Rep (;\r)>

where h, is chosen such that \/h,(ZT +¢€)Rep <;\> <r

r
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