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Null-controllability of PDEs 2

Ω

ω
Definition (Null-controllability of the heat
equation on ω in time T)
For every initial condition f0 ∈ L2(Ω), there exists
a control u ∈ L2([0, T]× ω) such that the solution
f of:

∂tf −∆f = 1ωu, f|∂Ω = 0, f (0) = f0

satisfies f (T, ·) = 0 on Ω.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))
Ω a C2 connected bounded open subset of Rn, ω a non-empty open subset of
Ω, and T > 0. The heat equation is null-controllable on ω in time T.
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Parabolic-Transport Systems 3

The equation:

∂tf (t, x) + A∂xf (t, x)− B∂2x f (t, x) + Kf (t, x) = M1ωu(t, x), (t, x) ∈ [0,+∞[× T

B =

(
0 0
0 D

)
, D+ D∗ positive-definite ; A =

(
A11 A12
A21 A22

)
, A11 = A∗11.

Coupling between parabolic and transport equations

f =
(
fh
fp

)
,

{
(∂t + A11∂x + K11)fh(t, x) + (A12∂x + K12)fp(t, x) = 1ωuh(t, x)
(∂t − D∂2x + A22∂x + K22)fp(t, x) + (A21∂x + K21)fh(t, x) = 1ωup(t, x)

Question
For every, f0 ∈ L2(T,Cd) does there exist u ∈ L2([0, T]× ω,Cm) such that
f (T, ·) = 0 ?



Outline 4

The results

(Idea of the) proof: fully actuated system

(Idea of the) proof: underactuated systems

Some refinements

Conclusion



The results
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Theorem (Case M = I, Beauchard-K-Le Balc’h 2020)
ω an open interval of T.

T∗ =
2π − length(ω)

minµ∈Sp(A11) |µ|

Then

1. the system is not null-controllable on ω in time T < T∗,
2. the system is null-controllable on ω in time T > T∗.

Minimal time = minimal time for the transport equation
In the case

∂tfh + A11∂xfh = uh1ω

Free solutions = sums of waves travelling at speed µk ∈ Sp(A11).



Underactuated system 6

The equation:

∂tf (t, x) + A∂xf (t, x)− B∂2x f (t, x) + Kf (t, x) = M1ωu(t, x), (t, x) ∈ [0,+∞[× T.

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every H4d(d−1) initial condition in time T > T∗ iff

∀n ∈ Z, Vect{(n2B+ inA+ K)iMv, i ∈ N, v ∈ Cd} = Cd

Coupling condition
n-th Fourier component of the parabolic-transport system:

X′n(t) + (n2B+ inA+ K)Xn(t) = Mun(t)

Condition of the theorem⇔ the finite-dimensional system
X′n + (n2B+ inA+ K)Xn = Mun is controllable.



Example: Linearized compressible Navier-Stokes 7

Navier-Stokes
ρ: fluid density. v: fluid velocity. a, γ, µ > 0.{

∂tρ+ ∂x(ρv) = 1ωu1(t, x) on [0, T]× T
ρ(∂tv + v∂xv) + ∂x(aργ)− µ∂2xv = 1ωu2(t, x) on [0, T]× T

Linearization around a stationnary state (ρ̄, v̄) ∈ R∗
+ × R∗ :{

∂tρ+ v̄∂xρ+ ρ̄∂xv = 1ωu1(t, x) sur [0, T]× T
∂tv + v̄∂xv + aρ̄γ−2∂xρ− µ

ρ̄∂
2
xv = 1ωu2(t, x) on [0, T]× T

• [Ervedoza-Guerrero-Glass-Puel 2012]: equation posed on (0, L), boundary control
acting on (ρ, v) in time T > L/|v̄|

• [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: velocity control in time T > 2π/|v̄| for the
initial conditions (ρ0, v0) ∈ H1 × L2.

• [K-Lissy 2023] with A =
( v̄ ρ̄

aρ̄γ−2 v̄
)
and B =

( 0 0
0 µ/ρ

)
: velocity control, in time

T > (2π − length(ω))/|v̄| for initial conditions in H1 × L2.
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(Idea of the) proof: fully actuated
system



Parabolic Components, Hyperbolic Components 8

Fourier components
(−B∂2x + A∂x + K)Xeinx = n2

(
B+

i
n
A− 1

n2
K
)
Xeinx

Spectrum of −B∂2x + A∂x + K
Sp(−B∂2x + A∂x + K) =

{
n2 Sp

(
B+

i
n
A− 1

n2
K
)}

Perturbation theory
λnk eigenvalue of B+ i

nA−
1
n2 K . λk eigenvalue of B: λnk → λk ∈ Sp(B)

• If λk 6= 0, n2λnk ∼
n→+∞

n2λk: parabolic frequencies

• If λk = 0, n2λnk ∼
n→+∞

inµk: hyperbolic frequencies

• Free solutions: =
∑

Xnkeinx−n
2λnkt ≈

∑
parabolic

Xnkeinx−n
2λkt +

∑
hyperbolic

Xnkeinx−inµkt

• Well-posed if <(λk) > 0 and µk ∈ R

• Not null-controllable in small time
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Control Strategy : Lebeau-Zuazua 9

Decouple and control

• For uh, find up that controls parabolic frequencies in time T

•
0 T ′ T<

• For up, find uh that controls the hyperbolic frequencies in time T
• If both steps agree, OK
• Make the two steps agree by choosing up smooth and using the Fredholm
alternative (on a finite codimension subspace)

• Step 1: null-controllability of a parabolic equation in time T − T ′ > 0
• Step 2: exact controllability of a perturbed transport equation in time T ′.
Ok if T ′ > T∗.

• Deal the finite dimensional subspaces that are left:
compactness-uniqueness
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(Idea of the) proof:
underactuated systems



Finite dimensional interlude 10

Theorem
If Vect{BiMX, i ∈ N, X ∈ Cd} = Cd, for every X0, XT ∈ Cd, there exists
u ∈ Hk0(0, T) such that

X′ = BX +Mu, X(0) = X0
satisfies X(T) = XT .

Proof through algebraic solvability (X0 = 0).
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u ∈ Hk0(0, T) such that

X′ = BX +Mu, X(0) = X0
satisfies X(T) = XT .

Proof through algebraic solvability (X0 = 0).
Case M = I. With X(t) = t

T XT : X′ =

BX +

1
T
XT

Exercise: add suitable Y(t) ∈ C∞([0, T]) with Y(0) = Y(T) = 0 to X so that

(X + Y)′ = B(X + Y) + u(t) + Y′(t) + BY(t)︸ ︷︷ ︸
ũ(t)

with ũ ∈ Hk0(0, T).
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Control for the case M = I
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Goal: with u := w1 + w′
2 + · · ·+ w(d−1)

d , X′ = BX +Mu, X(0) = 0, X(T) = XT .
P︷ ︸︸ ︷(

∂t − B︸ ︷︷ ︸
Operator on L2(T)d

M
) M︷ ︸︸ ︷(

0 −M · · · −
∑d−2

j=0 ∂jtBd−2−jM
I ∂t · · · ∂d−1t

)
= [B|M]

Y′ − BY = P ◦M(w) = (∂t − B)M1w +MM2w = (∂t − B)M1w +Mu



Fictitious control for parabolic-transport system 11

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every H4d(d−1) initial condition in time T > T∗ if

∀n ∈ Z, Rank([Bn|M]) = d.

Algebraic solvability on each Fourier components?

(∂t − B∂2x + A∂x + K)f = 1ωv

(v controls Q(∂x)−1f0)

Fourier−−−−−−−−−−−→ X′n = BnXn + vn
Kalman condition−−−−−−−−−−−→ X′n = BnXn + [Bn|M]wn
Algebraic Solvability−−−−−−−−−−−→ X′n = BnXn +Mun
Inverse Fourier−−−−−−−−−−−→ (∂t − B∂2x + A∂x + K)f = Mu

u = R(∂t, ∂x)v with R(τ,n) = P(τ,n)/Q(n) (rational function): no guarentee on
Supp(u)
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Some refinements
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Loss of regularity

• Null-controllability of every H4d(d−1)(T)d initial condition: very crude
regularity assumption

• Better regularity assumption: make the computations, hope that you find
an L2 control

• Some regularity assumption is needed in general

•
{

(∂t + ∂x)fh + ∂xfp + fp = 0
(∂t − ∂2x )fp = 1ωup

Smoothing: if f0,h /∈ H1, we cannot steer f0 to 0 with L2 controls



Refinement on the Kalman condition 13

Equations with invariants{
(∂t + ∂x)fh + ∂xfp = 0
(∂t − ∂2x )fp = 1ωup

not null-controllable:

for n = 0, Vect{(n2B+ inA+ K)iMv, i ∈ N, v ∈ Cd} = Vect
(
0
1
)
6= Cd

The average of the hyperbolic component is conserved. Maybe
null-controllability of every initial condition with zero hyperbolic-average?

Theorem ((K-Lissy 2023))
Assume T > T∗ and

• ∀|n| large enough, Vect{(n2B+ inA+ K)iMv, i ∈ N, v ∈ Cd} = Cd

• f0 ∈ H4d(d−1)(T)d

• ∀n ∈ Z, f̂0(n) ∈ Vect{(n2B+ inA+ K)iMv, i ∈ N, v ∈ Cd}

There exists a control in L2((0, T)× ω) that steers f0 to 0 in time T.
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Conclusion



Open problems 14

• domain other than T?
• non-constant coefficients?
• unique continuation?
• …



That’s all folks!
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