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Introduction



Null-controllability of PDEs 2

Definition (Null-controllability of the heat
equation on w in time T)

For every initial condition fy € L?(Q2), there exists
a control u € L%([0,T] x w) such that the solution
f of:

of —Af =1,u, flaa =0, f(0)=fo

satisfies f(T,-) = 0 on Q.
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Definition (Null-controllability of the heat
equation on w in time T)
For every initial condition fy € L?(Q2), there exists

a control u € L%([0, T] x w) such that the solution
f of:

of —Af =1,u, flaa =0, f(0)=fo
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Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))

Q a C? connected bounded open subset of R", w a non-empty open subset of
Q, and T > 0. The heat equation is null-controllable on w in time T.



Parabolic-Transport Systems 3

The equation:

Of (t,x) + Adf (t,X) — B (t,X) + Kf(t,x) = M1 u(t,x), (t,x) € [0, 400 x T

0 0 0nQ o A]] A12
B= , D+ D* positive-definite; A= , A = A7,
(o D)  DHOTD (A21 A22> e

Coupling between parabolic and transport equations

fo I (0r + A0« + Kin)fn(t, x) + (Ar20x + Ki2)fp(t, x) = T, up(t, x)
fo ) 1 (0 — DOZ + Andy + Kn)fp(t, X) + (A0 + Kt )fn(t, X) = 1, Up(t,X)

Question
For every, fo € [?(T, CY%) does there exist u € [%([0, T] x w,C™) such that

f(T7'):O?



The results

(Idea of the) proof: fully actuated system
(Idea of the) proof: underactuated systems
Some refinements

Conclusion



The results



Controllability of parabolic-transport systems

Theorem (Case M = |, Beauchard-K-Le Balc’h 2020)

w an open interval of T.
21 — length(w)

B minHGSP(Aﬂ) |/1’|

*

Then

1. the system is not null-controllable on w in time T < T*,
2. the system is null-controllable on w in time T > T*.

Minimal time = minimal time for the transport equation
In the case
Ofn + AnOxfn = uply,

Free solutions = sums of waves travelling at speed uy € Sp(An).



Underactuated system 6

The equation:

O (t,X) + Adf (t,X) — BOS(t, x) + Kf (t,x) = M1 u(t,x), (t,x) € [0, +oo] x T.
Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every H*d(@=1) injtial condition in time T > T* iff

vn € Z, Vect{(n’B + inA + K)Mv,i e N,v € C?} = C¢

Coupling condition .
n-th Fourier component of the parabolic-transport system:

X0\ (t) 4 (n?B + inA + K)X,(t) = Mup(t)

Condition of the theorem < the finite-dimensional system
X! + (n?B + inA + K)X, = Muj, is controllable.



Example: Linearized compressible Navier-Stokes 7

Navier-Stokes . .
p. fluid density. v: fluid velocity. a,~, u > 0.

Op + Ok(pv) = 1,Us(t,x) on [0,T] x T
p(Otv + voxv) + Ox(ap?) — udv = 1,uy(t,x) on [0,T] x T

Linearization around a stationnary state (p,v) € Rf x R* :

Op + VOxp + poxv = 1,Uq(t,x) sur[0,T] x T
OV + VOV + apY 20 p — %8X2v =1,Uy(t,x) on[0,T] x T
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Navier-Stokes . .
p. fluid density. v: fluid velocity. a,~, u > 0.

Op + Ok(pv) = 1,Us(t,x) on [0,T] x T
p(Otv + voxv) + Ox(ap?) — udv = 1,uy(t,x) on [0,T] x T

Linearization around a stationnary state (p,v) € Rf x R* :

Op + VOxp + poxv = 1,Uq(t,x) sur[0,T] x T
OV + VOV + apY 20 p — —82v =1,Uy(t,x) on[0,T] x T

+ [Ervedoza-Guerrero-Glass-Puel 2012]: equation posed on (0, L), boundary control
actingon (p,v) intime T > L/]V|

* [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: velocity control in time T > 2x/|v| for the
initial conditions (po,vo) e H x L%

* [K-Lissy 2023] With A = ( 052 _) and B = (o H/p) velocity control, in time
T > (27 — length(w))/|V| for initial conditions in H! x L2.



(Idea of the) proof: fully actuated
system




Parabolic Components, Hyperbolic Components 8

Fourier components
. i 1 .
B2+ AD, + KWXe™ = n? (B4 La— k) xel™
X n n2

Spectrum of —Bd?2 + Ady + K
' 1
Sp(—BO2 + Ady + K) = {n2 Sp (B + %A - nZK) }
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Fourier components
. i 1 .
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Perturbation theory
Ao eigenvalue of B+ 1A — K. A, eigenvalue of B: A, — A € Sp(B)

S If AR #0, 0%\, ~ n?\g parabolic frequencies
n—+oo

< If XAy =0,n?\,, ~ inug: hyperbolic frequencies
n—+4oo

. 2 e 2 P
- Free solutions: = mee’”x n"Anet anke’”x ARt Zere’”X gt
parabolic hyperbolic

- Well-posed if R(Ar) > 0and ur € R
- Not null-controllable in small time
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Control Strategy : Lebeau-Zuazua

Decouple and control

- For up, find u, that controls parabolic frequencies in time T

-\ >
0 f—I T'<T

- For up, find uj, that controls the hyperbolic frequencies in time T

- If both steps agree, OK

- Make the two steps agree by choosing u, smooth and using the Fredholm
alternative (on a finite codimension subspace)

- Step 1: null-controllability of a parabolic equation intime T —T" > 0

- Step 2: exact controllability of a perturbed transport equation in time T’.
Okif "> T+

- Deal the finite dimensional subspaces that are left:
compactness-uniqueness



(Idea of the) proof:
underactuated systems




Finite dimensional interlude

Theorem
If Vect{B'MX, i € N,X € C4} = CY, for every Xo, X; € CY, there exists
u € HE(0,T) such that

_ X' = BX + Mu, X(0) =X
satisfies X(T) = Xr.
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Finite dimensional interlude

Theorem
If Vect{B'MX, i € N,X € C4} = CY, for every Xo, X; € CY, there exists
u € HE(0,T) such that

_ X' = BX + Mu, X(0) =X
satisfies X(T) = Xr.

Proof through algebraic solvability (X, = 0).

. 1
Case M =I. With X(t) = tX;: X' =BX+ ?XT — %BXT

u(t)
Exercise: add suitable Y(t) € C>([0, T]) with Y(0) = Y(T) = 0 to X so that

(X+Y) = B(X+Y) + u(t) + Y'(t) + BY(t)
(t)

=B
=

with & € HE(0, T).
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Theorem
If Vect{B'MX, i € N,X € C4} = CY, for every Xo, X; € CY, there exists
u € HE(0,T) such that

_ X' = BX + Mu, X(0) =X
satisfies X(T) = Xr.

Proof through algebraic solvability (X, = 0).

General M. Kalman matrix: [B|M] := (M BM --- B4='M). Rank([B|M]) = d.

Let w = (Wi, ..., W4_q) € HI" such that Y = BY + [BIM]w, Y(0) = 0, Y(T) = Xr.
——

Control for the case M = |

Goal: with U = wy + wj 4 --- + W™, X' = BX 4 Mu, X(0) = 0, X(T) = Xr.

4 M
o — B M O —-M ... — d:2 de—zij
;,_/ 2170 d£1 _ [B‘M]
Operator on [2(T)d I o - o

Y —BY =PoM(w) = (0 — BIMw + MMow = (0 — B)Mw +Mu O



Fictitious control for parabolic-transport system

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every H*d(@=1 injtial condition in time T > T* if

Vn € Z, Rank([By|M]) = d.

Algebraic solvability on each Fourier components?

(0: — BO; + Ad + K)f =1V
_ fourler X! = BpXy + vy
Kalman condifon , x/' — B, Xy + [Ba|M]Wi
Algebraic Solvabllly, s _ g X + Mu,

Inverse Fourier (at . Baf +A6X + K)f — Mu
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Fictitious control for parabolic-transport system

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every H*¥@=" injtial condition in time T > T* if

Vn € Z, Rank([Ba|M]) = d.

Algebraic solvability on each Fourier components?

(0r — BO? + Adx + K)f =1,Q(8)v (v controls Q(8y)~ o)
Xp = BnXn + Q(—in)vy

X!, = BnXn + [Bn|M]Q(—in)[Bn|M] vy

X;, = BpXn + MP(0, —in)vy

(0r — BO? + Ady + K)f = MP(, x)v

Fourier
Kalman condition
Algebraic Solvability
V—__>

Inverse Fourier

u = R(0, 0x)Q(dx)v with R(r,n) = P(r,n)/Q(n) (rational function):
Supp(U)C Supp(v)



Some refinements




Refinement on the loss of regularity

Loss of regularity
- Null-controllability of every H*(d="(T)? initial condition: very crude
regularity assumption
- Better regularity assumption: make the computations, hope that you find
an L? control
- Some regularity assumption is needed in general
. (3t+3x)fh+3xfp +fp:O
(B — B)fp = Tullp
Smoothing: if fon ¢ H', we cannot steer f, to 0 with L? controls



Refinement on the Kalman condition

Equations with invariants
(B + D)y + Oy = 0
(0 — 3)fp = LuUp

for n = 0, Vect{(n’B + inA + K)'Mv,i € N,v € C?} = Vect (9) # C°

The average of the hyperbolic component is conserved. Maybe

null-controllability of every initial condition with zero hyperbolic-average?

not null-controllable:



Refinement on the Kalman condition

Equations with invariants
(0 + O)fa + Bfp = O
(0 — 3)fp = LuUp

for n = 0, Vect{(n’B +inA + K)'Mv,i € N,v € C?} = Vect (9) # C?

The average of the hyperbolic component is conserved. Maybe

null-controllability of every initial condition with zero hyperbolic-average?

not null-controllable:

Theorem ((K-Lissy 2023))

Assume T > T, and
- V|n| large enough, Vect{(n*B + inA + K)'Mv,i € N,v e C?} = C?
. fO c H4d(d71)(T)d
- Vn € Z, ﬁ;(n) € Vect{(n*B 4 inA + K)'Mv,i € N,v € C}

There exists a control in L2((0,T) x w) that steers f, to 0 in time T.



Conclusion




Open problems

- domain other than T?
- non-constant coefficients?

- unique continuation?



That's all folks!
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