Null-controllability of parabolic-transport systems

Armand Koenig

20th June 2023
Workshop ANR TRECOS

Introduction

Definition (Null-controllability of the heat

 equation on ω in time T)For every initial condition $f_{0} \in L^{2}(\Omega)$, there exists a control $u \in L^{2}([0, T] \times \omega)$ such that the solution f of:

$$
\partial_{t} f-\Delta f=1_{\omega} u, \quad f_{\mid \partial \Omega}=0, \quad f(0)=f_{0}
$$

satisfies $f(T, \cdot)=0$ on Ω.

Null-controllability of PDEs

Definition (Null-controllability of the heat

 equation on ω in time T)For every initial condition $f_{0} \in L^{2}(\Omega)$, there exists a control $u \in L^{2}([0, T] \times \omega)$ such that the solution f of:

$$
\partial_{t} f-\Delta f=1_{\omega} u, \quad f_{\mid \partial \Omega}=0, \quad f(0)=f_{0}
$$

satisfies $f(T, \cdot)=0$ on Ω.
Theorem (Null-controllability of the heat equation (Lebeau \& Robbiano 1995, Fursikov \& Imanuvilov 1996))
Ω a C^{2} connected bounded open subset of \mathbb{R}^{n}, ω a non-empty open subset of Ω, and $T>0$. The heat equation is null-controllable on ω in time T.

Parabolic-Transport Systems

The equation:

$$
\begin{gathered}
\partial_{t} f(t, x)+A \partial_{x} f(t, x)-B \partial_{x}^{2} f(t, x)+K f(t, x)=M 1_{\omega} u(t, x), \quad(t, x) \in[0,+\infty[\times \mathbb{T} \\
B=\left(\begin{array}{ll}
0 & 0 \\
0 & D
\end{array}\right), D+D^{*} \text { positive-definite ; } A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), A_{11}=A_{11}^{*} .
\end{gathered}
$$

Coupling between parabolic and transport equations

$$
f=\binom{f_{h}}{f_{p}},\left\{\begin{array}{l}
\left(\partial_{t}+A_{11} \partial_{x}+K_{11}\right) f_{h}(t, x)+\left(A_{12} \partial_{x}+K_{12}\right) f_{p}(t, x)=1_{\omega} u_{h}(t, x) \\
\left(\partial_{t}-D \partial_{x}^{2}+A_{22} \partial_{x}+K_{22}\right) f_{p}(t, x)+\left(A_{21} \partial_{x}+K_{21}\right) f_{h}(t, x)=1_{\omega} u_{p}(t, x)
\end{array}\right.
$$

Question

For every, $f_{0} \in L^{2}\left(\mathbb{T}, \mathbb{C}^{d}\right)$ does there exist $u \in L^{2}\left([0, T] \times \omega, \mathbb{C}^{m}\right)$ such that $f(T, \cdot)=0$?

Outline

The results
(Idea of the) proof: fully actuated system
(Idea of the) proof: underactuated systems

Some refinements

Conclusion

The results

Controllability of parabolic-transport systems

Theorem (Case $M=I$, Beauchard-K-Le Balc'h 2020)

ω an open interval of \mathbb{T}.

$$
T^{*}=\frac{2 \pi-\text { length }(\omega)}{\min _{\mu \in \operatorname{Sp}\left(A_{11}\right)}|\mu|}
$$

Then

1. the system is not null-controllable on ω in time $T<T^{*}$,
2. the system is null-controllable on ω in time $T>T^{*}$.

Minimal time $=$ minimal time for the transport equation In the case

$$
\partial_{t} f_{h}+A_{11} \partial_{x} f_{h}=u_{h} 1_{\omega}
$$

Free solutions $=$ sums of waves travelling at speed $\mu_{k} \in \operatorname{Sp}\left(A_{11}\right)$.

Underactuated system

The equation:

$$
\partial_{t} f(t, x)+A \partial_{x} f(t, x)-B \partial_{x}^{2} f(t, x)+K f(t, x)=M 1_{\omega} u(t, x), \quad(t, x) \in[0,+\infty[\times \mathbb{T} .
$$

Theorem (Underactuated system (K-Lissy 2023))

Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ iff

$$
\forall n \in \mathbb{Z}, \operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}
$$

Coupling condition

n-th Fourier component of the parabolic-transport system:

$$
X_{n}^{\prime}(t)+\left(n^{2} B+i n A+K\right) X_{n}(t)=M u_{n}(t)
$$

Condition of the theorem \Leftrightarrow the finite-dimensional system $X_{n}^{\prime}+\left(n^{2} B+i n A+K\right) X_{n}=M u_{n}$ is controllable.

Example: Linearized compressible Navier-Stokes

Navier-Stokes

ρ : fluid density. v: fluid velocity. $a, \gamma, \mu>0$.

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \rho+\partial_{x}(\rho v)=1_{\omega} u_{1}(t, x) \text { on }[0, T] \times \mathbb{T} \\
\rho\left(\partial_{\mathrm{t}} v+v \partial_{x} v\right)+\partial_{x}\left(a \rho^{\gamma}\right)-\mu \partial_{x}^{2} v=1_{\omega} u_{2}(t, x) \text { on }[0, T] \times \mathbb{T}
\end{array}\right.
$$

Linearization around a stationnary state $(\bar{\rho}, \bar{v}) \in \mathbb{R}_{+}^{*} \times \mathbb{R}^{*}$:

$$
\left\{\begin{array}{l}
\partial_{\mathrm{t}} \rho+\bar{v} \partial_{x} \rho+\bar{\rho} \partial_{x} v=1_{\omega} u_{1}(t, x) \operatorname{sur}[0, T] \times \mathbb{T} \\
\partial_{\mathrm{t}} v+\bar{v} \partial_{x} v+a \bar{\rho}^{\gamma-2} \partial_{x} \rho-\frac{\mu}{\bar{\rho}} \partial_{x}^{2} v=1_{\omega} u_{2}(t, x) \text { on }[0, T] \times \mathbb{T}
\end{array}\right.
$$

Example: Linearized compressible Navier-Stokes

Navier-Stokes

ρ : fluid density. v: fluid velocity. $a, \gamma, \mu>0$.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=1_{\omega} u_{1}(t, x) \text { on }[0, T] \times \mathbb{T} \\
\rho\left(\partial_{t} v+v \partial_{x} v\right)+\partial_{x}\left(a \rho^{\gamma}\right)-\mu \partial_{x}^{2} v=1_{\omega} u_{2}(t, x) \text { on }[0, T] \times \mathbb{T}
\end{array}\right.
$$

Linearization around a stationnary state $(\bar{\rho}, \bar{v}) \in \mathbb{R}_{+}^{*} \times \mathbb{R}^{*}$:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\bar{v} \partial_{x} \rho+\bar{\rho} \partial_{x} v=1_{\omega} u_{1}(t, x) \text { sur }[0, T] \times \mathbb{T} \\
\partial_{t} v+\bar{v} \partial_{x} v+a \bar{\rho}^{\gamma-2} \partial_{x} \rho-\frac{\mu}{\bar{\rho}} \partial_{x}^{2} v=1_{\omega} u_{2}(t, x) \text { on }[0, T] \times \mathbb{T}
\end{array}\right.
$$

- [Ervedoza-Guerrero-Glass-Puel 2012]: equation posed on $(0, L)$, boundary control acting on (ρ, v) in time $T>L /|\bar{v}|$
- [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: velocity control in time $T>2 \pi /|\bar{V}|$ for the initial conditions $\left(\rho_{0}, v_{0}\right) \in H^{1} \times L^{2}$.
- [k-Lissy 2023] with $A=\binom{\overline{\bar{\gamma}}-\bar{\rho}}{a \bar{\rho} \gamma}$ and $B=\left(\begin{array}{cc}0 & 0 \\ 0 & \mu / \rho\end{array}\right)$: velocity control, in time $T>(2 \pi-$ length $(\omega)) /|\bar{V}|$ for initial conditions in $H^{1} \times L^{2}$.
(Idea of the) proof: fully actuated system

Parabolic Components, Hyperbolic Components

Fourier components

$$
\left(-B \partial_{x}^{2}+A \partial_{x}+K\right) X e^{i n x}=n^{2}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right) X e^{i n x}
$$

Spectrum of $-B \partial_{x}^{2}+A \partial_{x}+K$

$$
\operatorname{Sp}\left(-B \partial_{x}^{2}+A \partial_{x}+K\right)=\left\{n^{2} \operatorname{Sp}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right)\right\}
$$

Parabolic Components, Hyperbolic Components

Fourier components

$$
\left(-B \partial_{x}^{2}+A \partial_{x}+K\right) X e^{i n x}=n^{2}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right) X e^{i n x}
$$

Spectrum of $-B \partial_{x}^{2}+A \partial_{x}+K$

$$
\operatorname{Sp}\left(-B \partial_{x}^{2}+A \partial_{x}+K\right)=\left\{n^{2} \operatorname{Sp}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right)\right\}
$$

Perturbation theory
$\lambda_{n k}$ eigenvalue of $B+\frac{i}{n} A-\frac{1}{n^{2}} K$. λ_{k} eigenvalue of B : $\lambda_{n k} \rightarrow \lambda_{k} \in \operatorname{Sp}(B)$

- If $\lambda_{k} \neq 0, n^{2} \lambda_{n k} \underset{n \rightarrow+\infty}{\sim} n^{2} \lambda_{k}$: parabolic frequencies
- If $\lambda_{k}=0, n^{2} \lambda_{n k} \underset{n \rightarrow+\infty}{\sim}$ in μ_{k} : hyperbolic frequencies

Parabolic Components, Hyperbolic Components

Fourier components

$$
\left(-B \partial_{x}^{2}+A \partial_{x}+K\right) X e^{i n x}=n^{2}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right) X e^{i n x}
$$

Spectrum of $-B \partial_{x}^{2}+A \partial_{x}+K$

$$
\operatorname{Sp}\left(-B \partial_{x}^{2}+A \partial_{x}+K\right)=\left\{n^{2} \operatorname{Sp}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right)\right\}
$$

Perturbation theory

$\lambda_{n k}$ eigenvalue of $B+\frac{i}{n} A-\frac{1}{n^{2}} K$. λ_{k} eigenvalue of B : $\lambda_{n k} \rightarrow \lambda_{k} \in \operatorname{Sp}(B)$

- If $\lambda_{k} \neq 0, n^{2} \lambda_{n k} \underset{n \rightarrow+\infty}{\sim} n^{2} \lambda_{k}$: parabolic frequencies
- If $\lambda_{k}=0, n^{2} \lambda_{n k} \underset{n \rightarrow+\infty}{\sim}$ in μ_{k} : hyperbolic frequencies
- Free solutions: $=\sum X_{n k} e^{i n x-n^{2} \lambda_{n k} t} \approx \sum_{\text {parabolic }} X_{n k} e^{i n x-n^{2} \lambda_{k} t}+\sum_{\text {hyperbolic }} X_{n k} e^{i n x-i n \mu_{k} t}$
- Well-posed if $\Re\left(\lambda_{k}\right)>0$ and $\mu_{k} \in \mathbb{R}$
- Not null-controllable in small time

Decouple and control

Decouple and control

- For u_{n}, find u_{p} that controls parabolic frequencies in time T

Control Strategy : Lebeau-Zuazua

Decouple and control

- For u_{n}, find u_{p} that controls parabolic frequencies in time T
.

- For u_{p}, find u_{h} that controls the hyperbolic frequencies in time T

Control Strategy : Lebeau-Zuazua

Decouple and control

- For u_{h}, find u_{p} that controls parabolic frequencies in time T
.

- For u_{p}, find u_{h} that controls the hyperbolic frequencies in time T
- If both steps agree, OK
- Make the two steps agree by choosing u_{p} smooth and using the Fredholm alternative (on a finite codimension subspace)

Control Strategy : Lebeau-Zuazua

Decouple and control

- For u_{n}, find u_{p} that controls parabolic frequencies in time T
.

- For u_{p}, find u_{h} that controls the hyperbolic frequencies in time T
- If both steps agree, OK
- Make the two steps agree by choosing u_{p} smooth and using the Fredholm alternative (on a finite codimension subspace)
- Step 1: null-controllability of a parabolic equation in time $T-T^{\prime}>0$
- Step 2: exact controllability of a perturbed transport equation in time T^{\prime}. Ok if $T^{\prime}>T^{*}$.

Control Strategy : Lebeau-Zuazua

Decouple and control

- For u_{n}, find u_{p} that controls parabolic frequencies in time T
.

- For u_{p}, find u_{n} that controls the hyperbolic frequencies in time T
- If both steps agree, OK
- Make the two steps agree by choosing u_{p} smooth and using the Fredholm alternative (on a finite codimension subspace)
- Step 1: null-controllability of a parabolic equation in time $T-T^{\prime}>0$
- Step 2: exact controllability of a perturbed transport equation in time T^{\prime}. Ok if $T^{\prime}>T^{*}$.
- Deal the finite dimensional subspaces that are left: compactness-uniqueness
(Idea of the) proof: underactuated systems

Theorem

If $\operatorname{Vect}\left\{B^{i} M X, i \in \mathbb{N}, X \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$, for every $X_{0}, X_{T} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that

$$
X^{\prime}=B X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=X_{T}$.

Theorem

If $\operatorname{Vect}\left\{B^{i} M X, i \in \mathbb{N}, X \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$, for every $X_{0}, X_{T} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that

$$
X^{\prime}=B X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=X_{T}$.
Proof through algebraic solvability $\left(X_{0}=0\right)$.
Case $M=I$. With $X(t)=\frac{t}{T} X_{T}: \quad X^{\prime}=\quad \frac{1}{T} X_{T}$

Theorem

If $\operatorname{Vect}\left\{B^{i} M X, i \in \mathbb{N}, X \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$, for every $X_{0}, X_{T} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that

$$
X^{\prime}=B X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=X_{T}$.
Proof through algebraic solvability $\left(X_{0}=0\right)$.
Case $M=1$. With $X(t)=\frac{t}{T} X_{T}: \quad X^{\prime}=B X+\underbrace{\frac{1}{\tau} X_{T}-\frac{t}{T} B X_{T}}_{u(t)}$

Theorem

If $\operatorname{Vect}\left\{B^{i} M X, i \in \mathbb{N}, X \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$, for every $X_{0}, X_{T} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that

$$
X^{\prime}=B X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=X_{T}$.
Proof through algebraic solvability $\left(X_{0}=0\right)$.
Case $M=1$. With $X(t)=\frac{t}{T} X_{T}: \quad X^{\prime}=B X+\underbrace{\frac{1}{T} X_{T}-\frac{t}{T} B X_{T}}_{u(t)}$
Exercise: add suitable $Y(t) \in C^{\infty}([0, T])$ with $Y(0)=Y(T)=0$ to X so that

$$
(X+Y)^{\prime}=B(X+Y)+\underbrace{u(t)+Y^{\prime}(t)+B Y(t)}_{\tilde{u}(t)}
$$

with $\tilde{u} \in H_{0}^{k}(0, T)$.

Theorem

If $\operatorname{Vect}\left\{B^{i} M X, i \in \mathbb{N}, X \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$, for every $X_{0}, X_{T} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that

$$
X^{\prime}=B X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=X_{T}$.
Proof through algebraic solvability $\left(X_{0}=0\right)$.
General M. Kalman matrix: $[B \mid M]:=\left(M B M \cdots B^{d-1} M\right) \cdot \operatorname{Rank}([B \mid M])=d$.
Let $w=\left(w_{1}, \ldots, w_{d-1}\right) \in H_{0}^{d-1}$ such that $Y^{\prime}=B Y+\underbrace{[B \mid M] w}, Y(0)=0, Y(T)=X_{T}$.
Control for the case $M=1$

Finite dimensional interlude

Theorem

If $\operatorname{Vect}\left\{B^{i} M X, i \in \mathbb{N}, X \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$, for every $X_{0}, X_{T} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that

$$
X^{\prime}=B X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=X_{T}$.

Proof through algebraic solvability $\left(X_{0}=0\right)$.
General M. Kalman matrix: $[B \mid M]:=\left(M B M \cdots B^{d-1} M\right) . \operatorname{Rank}([B \mid M])=d$.
Let $w=\left(w_{1}, \ldots, w_{d-1}\right) \in H_{0}^{d-1}$ such that $Y^{\prime}=B Y+\underbrace{[B \mid M] W}, Y(0)=0, Y(T)=X_{T}$.
Control for the case $M=1$
Goal: with $u:=w_{1}+w_{2}^{\prime}+\cdots+w_{d}^{(d-1)}, X^{\prime}=B X+M u, X(0)=0, X(T)=X_{T}$.

$$
\begin{aligned}
& \overbrace{\left(\begin{array}{lll}
\underbrace{\partial_{t}-B}_{\text {operator on } L^{2}(\mathbb{T})^{d}}
\end{array}\right)}^{M} \overbrace{\left(\begin{array}{cccc}
0 & -M & \cdots & -\sum_{j=0}^{d-2} \partial_{\partial}^{j} B^{d-2-j} M \\
1 & \partial_{t} & \cdots & \partial_{t}^{d-1}
\end{array}\right)}^{\mathcal{M}}=[B \mid M] \\
& Y^{\prime}-B Y=\mathcal{P} \circ \mathcal{M}(w)=\left(\partial_{t}-B\right) \mathcal{M}_{1} w+M \mathcal{M}_{2} w=\left(\partial_{t}-B\right) \mathcal{M}_{1} w+M u
\end{aligned}
$$

Fictitious control for parabolic-transport system

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ if

$$
\forall n \in \mathbb{Z}, \operatorname{Rank}\left(\left[B_{n} \mid M\right]\right)=d
$$

Algebraic solvability on each Fourier components?

$$
\begin{array}{ll}
& \left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=1_{\omega} v \\
\text { Fourier } & X_{n}^{\prime}=B_{n} X_{n}+v_{n} \\
\xrightarrow[\text { Kalman condition }]{\text { Algebraic Solvability }} & X_{n}^{\prime}=B_{n} X_{n}+\left[B_{n} \mid M\right] w_{n} \\
\xrightarrow{\text { Inverse Fourier }} & X_{n}^{\prime}=B_{n} X_{n}+M u_{n} \\
& \left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=M u
\end{array}
$$

Fictitious control for parabolic-transport system

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ if

$$
\forall n \in \mathbb{Z}, \operatorname{Rank}\left(\left[B_{n} \mid M\right]\right)=d
$$

Algebraic solvability on each Fourier components?

$$
\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=1_{\omega} V
$$

Fourier

$$
\begin{aligned}
& \xrightarrow{\text { Kalman condition }} X_{n}^{\prime}=B_{n} X_{n}+\left[B_{n} \mid M\right] W_{n} \\
& \xrightarrow{\text { Algebraic Solvability }} X_{n}^{\prime}=B_{n} X_{n}+M u_{n}
\end{aligned}
$$

$$
\xrightarrow{\text { Inverse Fourier }}\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=M u
$$

$u=R\left(\partial_{t}, \partial_{x}\right) v$ with $R(\tau, n)=P(\tau, n) / Q(n)$ (rational function): no guarentee on Supp(u)

Fictitious control for parabolic-transport system

Theorem (Underactuated system (K-Lissy 2023))
Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ if

$$
\forall n \in \mathbb{Z}, \operatorname{Rank}\left(\left[B_{n} \mid M\right]\right)=d
$$

Algebraic solvability on each Fourier components?

$$
\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=1_{\omega} Q\left(\partial_{x}\right) v \quad\left(v \text { controls } Q\left(\partial_{x}\right)^{-1} f_{0}\right)
$$

Fourier

$$
\begin{aligned}
& \xrightarrow{\text { Kalman condition }} X_{n}^{\prime}=B_{n} X_{n}+\left[B_{n} \mid M\right] Q(-i n)\left[B_{n} \mid M\right]^{-1} V_{n} \\
& \xrightarrow{\text { Algebraic Solvability }} X_{n}^{\prime}=B_{n} X_{n}+M P\left(\partial_{t},-i n\right) v_{n}
\end{aligned}
$$

$$
\xrightarrow{\text { Inverse Fourier }}\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=M P\left(\partial_{t}, \partial_{x}\right) \vee
$$

$u=R\left(\partial_{t}, \partial_{x}\right) Q\left(\partial_{x}\right) v$ with $R(\tau, n)=P(\tau, n) / Q(n)$ (rational function):
Supp $(u) \subset \operatorname{Supp}(v)$

Some refinements

Loss of regularity

- Null-controllability of every $H^{4 d(d-1)}(\mathbb{T})^{d}$ initial condition: very crude regularity assumption
- Better regularity assumption: make the computations, hope that you find an L^{2} control
- Some regularity assumption is needed in general
$\cdot\left\{\begin{array}{l}\left(\partial_{t}+\partial_{x}\right) f_{h}+\partial_{x} f_{p}+f_{p}=0 \\ \left(\partial_{t}-\partial_{x}^{2}\right) f_{p}=1_{\omega} u_{p}\end{array}\right.$
Smoothing: if $f_{0, \mathrm{~h}} \notin H^{1}$, we cannot steer f_{0} to 0 with L^{2} controls

Refinement on the Kalman condition

Equations with invariants
$\left\{\begin{array}{l}\left(\partial_{t}+\partial_{x}\right) f_{h}+\partial_{x} f_{p}=0 \\ \left(\partial_{t}-\partial_{x}^{2}\right) f_{p}=1_{\omega} u_{p}\end{array}\right.$ not null-controllable:
for $n=0, \operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}=\operatorname{Vect}\binom{0}{1} \neq \mathbb{C}^{d}$
The average of the hyperbolic component is conserved. Maybe null-controllability of every initial condition with zero hyperbolic-average?

Refinement on the Kalman condition

Equations with invariants
$\left\{\begin{array}{l}\left(\partial_{t}+\partial_{x}\right) f_{\mathrm{h}}+\partial_{\mathrm{x}} f_{\mathrm{p}}=0 \\ \left(\partial_{\mathrm{t}}-\partial_{x}^{2}\right) f_{\mathrm{p}}=1_{\omega} u_{\mathrm{p}}\end{array}\right.$ not null-controllable:
for $n=0, \operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}=\operatorname{Vect}\binom{0}{1} \neq \mathbb{C}^{d}$
The average of the hyperbolic component is conserved. Maybe null-controllability of every initial condition with zero hyperbolic-average?

Theorem ((K-Lissy 2023))

Assume $T>T_{*}$ and

- $\forall|n|$ large enough, $\operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$
- $f_{0} \in H^{4 d(d-1)}(\mathbb{T})^{d}$
- $\forall n \in \mathbb{Z}, \widehat{f}_{0}(n) \in \operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}$

There exists a control in $L^{2}((0, T) \times \omega)$ that steers f_{0} to 0 in time T.

Conclusion

Open problems

- domain other than \mathbb{T} ?
- non-constant coefficients?
- unique continuation?
- ...

That's all folks!

