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Abstract. We study the null-controllability properties of heat-like equations posed on the whole Eu-
clidean space ℝ𝑛 . These evolution equations are associated with Fourier multipliers of the form 𝜌(|𝐷𝑥|),
where 𝜌∶ [0,+∞)→ ℂ is a measurable function such that Re 𝜌 is bounded from below. We consider the
“weakly dissipative” case, a typical example of which is given by the fractional heat equations associated
with the multipliers 𝜌(𝜉) = 𝜉𝑠 in the regime 𝑠 ∈ (0, 1), for which very few results exist. We identify
sufficient conditions and necessary conditions on the control supports for the null-controllability to hold.
More precisely, we prove that these equations are null-controllable in any positive time from control
supports which are sufficiently thick at all scales. Under assumptions on the multiplier 𝜌, in particular
assuming that 𝜌(𝜉) = 𝑜(𝜉), we also prove that the null-controllability implies that the control support is
thick at all scales, with an explicit lower bound of the thickness ratio in terms of the multiplier 𝜌. Finally,
using Smith-Volterra-Cantor sets, we provide examples of non-trivial control supports that satisfy these
necessary or sufficient conditions.

1. Introduction

1.1. Motivation. We study the null-controllability properties of the following class of parabolic
heat-like equations

(𝐸𝜌) {𝜕𝑡𝑓(𝑡, 𝑥) + 𝜌(|𝐷𝑥|)𝑓(𝑡, 𝑥) = 1𝜔𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ∗
+ ×ℝ𝑛,

𝑓(0, ⋅) = 𝑓0 ∈ 𝐿2(ℝ𝑛).

Above, the operator 𝜌(|𝐷𝑥|) is the Fourier multiplier associated with the symbol 𝜌(|𝜉|), with | ⋅ | the
canonical Euclidean norm in ℝ𝑛, the function 𝜌∶ [0,+∞)→ ℂ being measurable such that Re 𝜌 is
bounded from below, and 𝜔 ⊂ ℝ𝑛 is a measurable set with positive Lebesgue measure. We investigate
the relationship between the geometry of 𝜔 and the null-controllability properties of these heat-like
equations, defined as follows.

Definition 1. Let 𝑇 > 0 and 𝜔 ⊂ ℝ𝑛 be a measurable set with positive measure. The equation (𝐸𝜌)
is said to be null-controllable from 𝜔 in time 𝑇 > 0 when for all 𝑓0 ∈ 𝐿2(ℝ𝑛), there exists a control
𝑢 ∈ 𝐿2((0, 𝑇) × 𝜔) such that the mild solution of (𝐸𝜌) satisfies 𝑓(𝑇, ⋅) = 0.

Although the null-controllability properties of parabolic equations posed on bounded domains of
ℝ𝑛 have been known for years [19, 22, 23, 3, 4, 7], the same study for parabolic equations posed on
the whole Euclidean space ℝ𝑛, as the equations (𝐸𝜌), is quite recent. It follows from previous works
[1, 2, 6, 11, 12, 14, 21, 25, 26] that the null-controllability properties of such models, and also their
approximate null-controllability or the stabilization properties, are associated with the geometric
notion of thickness, defined as follows.
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Definition 2. Given 𝛾 ∈ (0, 1) and 𝑟 > 0, the set 𝜔 ⊂ ℝ𝑛 is said to be 𝛾-thick at scale 𝑟, or (𝛾, 𝑟)-thick,
when it is measurable and satisfies

∀𝑥 ∈ ℝ𝑛, Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≥ 𝛾 Leb(𝐵(𝑥, 𝑟)),
where Leb denotes the Lebesgue measure in ℝ𝑛.

Precisely, it is known from the work [2] that the thickness is a geometric necessary condition for
the null-controllability of the general equations (𝐸𝜌) (in fact, more generally, for the rapid stabilization
of such equations). This condition also turns out to be a necessary and sufficient condition that
ensures the null-controllability in any positive time 𝑇 > 0 of the fractional heat equations (𝐸𝜌𝑠 )
associated with the multipliers 𝜌𝑠(𝑡) = 𝑡𝑠 in the regime 𝑠 > 1 [1, 12, 24, 26]. For this particular class
of equations, which will serve as a common thread throughout this introduction, it was also proven
in [16] that in the weak-dissipation regime 𝑠 ∈ (0, 1), positive null-controllability results can not be
obtained from control supports 𝜔 ⊂ ℝ𝑛 which are not dense in the whole space ℝ𝑛, this result being
also established in the critical dissipation regime 𝑠 = 1 (corresponding to the half-heat equation) in
dimension 𝑛 = 1 [17, Théorème 2.3][20].
From this point on, two areas of work naturally emerge. On the one hand, it would be interesting

to characterize the multipliers 𝜌 for which the thickness is a necessary and sufficient geometric
condition that ensures the null-controllability of the associated evolution equations (𝐸𝜌), as with
the strongly-dissipative heat equations (it is worth noting that the generalized Lebeau-Robianno’s
method as stated by Duyckaerts and Miller [10, Theorem 6.1] together with Kovrijkine’s spectral
estimate [18] gives a first result on this topic). One the other hand, it would be interesting to study
the null-controllability properties of the heat-like equations (𝐸𝜌) in a weak-dissipation setting, for
which very few results have been obtained so far, and to continue the studies carried out in the works
[16, 17, 20], in particular by looking for control supports fromwhich these equations can be controlled
to zero. In the following, we will only focus on this second point.

1.2. Main results. In the present work, we prove that the null-controllability properties of the
parabolic heat-like equations (𝐸𝜌) is associated with the following stronger notion of thickness in the
weak-dissipation regime.

Definition 3. Given some 𝑟0 > 0 and a function 𝛾∶ (0, 𝑟0]→ [0, 1], a measurable set 𝜔 ⊂ ℝ𝑛 is said
to be thick with respect to 𝛾 (or 𝛾-thick) when it satisfies that for every 𝑟 ∈ (0, 𝑟0] and 𝑥 ∈ ℝ𝑛,

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≥ 𝛾(𝑟) Leb(𝐵(𝑥, 𝑟)).
This definition can be rephrased as “𝜔 is 𝛾(𝑟)-thick at every scale 𝑟 ∈ (0, 𝑟0]”. Therefore, being

thick with respect to 𝛾 is a far stronger notion than the usual notion of thickness.
We first prove a general result stating that the parabolic equation (𝐸𝜌) is always null-controllable

from control supports𝜔 ⊂ ℝ𝑛 being thick with respect to some function 𝛾𝜌 associated to themultiplier
𝜌 (under reasonnable assumptions).
Theorem 4. Let 𝜌∶ [0,+∞)→ ℂ be a function such that Re 𝜌 is a non-negative continuous function
satisfying lim+∞ Re 𝜌 = +∞. Let 𝑟0 > 0 and 𝛾𝜌 ∶ (0, 𝑟0]→ (0, 1] be the function defined by
(1) 𝛾𝜌(𝑟) ≔ 𝑐0 exp(−𝑐1(Re 𝜌)(1∕𝑟)𝛼),
where 𝑐0 ∈ (0, 1), 𝑐1 > 0 and 𝛼 ∈ (0, 1) are some parameters. Let 𝜔 ⊂ ℝ𝑛 be 𝛾𝜌-thick. Then, for every
𝑇 > 0, the parabolic equation (𝐸𝜌) is null-controllable from 𝜔 in time 𝑇.

Under additional assumptions on the multiplier 𝜌, we also prove that the thickness with respect to
some function �̃�𝜌 ∶ (0, 𝑟0]→ [0, 1] is also a necessary condition for the null-controllability to hold.

Theorem 5. Let 𝐾 > 0 and 𝒞 = {𝜉 ∈ ℂ,Re(𝜉) > 𝐾, |Im(𝜉)| < 𝐾−1 Re(𝜉)}. Let 𝜌∶ 𝒞 ∪ ℝ+ → ℂ be
such that
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∙ 𝜌 is holomorphic on 𝒞,
∙ 𝜌(𝜉) = 𝑜(𝜉) as |𝜉|→∞, 𝜉 ∈ 𝒞,
∙ 𝜌 is measurable onℝ+ and infℝ+ Re(𝜌) > −∞,
∙ there exists 𝐶 > 0 such that for 𝜉 ∈ 𝒞, |Im 𝜌(𝜉)| ≤ 𝐶 Re 𝜌(𝜉),
∙ ln(𝜉) = 𝑜(Re 𝜌(𝜉)) in the limit |𝜉|→ +∞, 𝜉 ∈ 𝒞.

Let 𝑇 > 0 and 𝜔 ⊂ ℝ𝑛 be measurable. Assume that the parabolic equation (𝐸𝜌) is null controllable
from 𝜔 in time 𝑇 > 0.
There exists 𝜆 > 0, 𝑟0 > 0 and 𝑐 > 0 such that for every 𝜖 > 0, and for every function 𝑟 ∈ (0, 𝑟0] ↦

ℎ𝑟 ∈ ℝ∗
+ that satisfy

(2) ∀𝑟 ∈ (0, 𝑟0],
√
ℎ𝑟2𝑇(1 + 𝜖) Re 𝜌 ( 𝜆ℎ𝑟

) ≤ 𝑟,

then, there exists 𝑟1 ∈ (0, 𝑟0) such that for every 0 < 𝑟 < 𝑟1, and 𝑥 ∈ ℝ𝑛, we have
Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))
Leb(𝐵(𝑥, 𝑟))

≥ 𝑐𝑟−𝑛 exp (−2𝑇(1 + 𝜖) Re 𝜌 ( 𝜆ℎ𝑟
)) .

Remark 6.
∙ The conclusion of this theorem can be rephrased as “𝜔 is 𝛾-thick”, where

𝛾∶ (0, 𝑟1] ∋ 𝑟 ↦ 𝑐𝑟−𝑛 exp (−2𝑇(1 + 𝜖) Re 𝜌 ( 𝜆ℎ𝑟
)) .

∙ The hypothesis 𝜌(𝜉) = 𝑜(𝜉) is a rigorous way of saying that the heat-like equation (𝐸𝜌) is
weakly dissipative. Since the null-controllability is known to hold for strongly dissipative
equations (e.g., the heat equation) on any thick set, one cannot expect to obtain theorem 5
without a hypothesis of this kind.

∙ The hypotheses |Im 𝜌(𝜉)| ≤ 𝐶 Re 𝜌(𝜉) and ln(𝜉) = 𝑜(Re 𝜌(𝜉)) are mainly assumed for cos-
metic reasons. We could prove some results with weaker hypotheses, but the result (and the
proof) would be even more tedious. This would be of dubious interest, as such, we prefer not
to detail these results here.

∙ The holomorphy hypothesis is a technical limitation of our strategy of proof involving complex
deformation of integration path. Proving a version of theorem 5 without this hypothesis is an
open problem.

Remark 7. Given some function 𝛾∶ (0, 𝑟0] → [0, 1], an example of set being 𝛾-thick is of course
the whole space ℝ𝑛, but it might be difficult to visualize non trivial examples of sets satisfying this
property. In section 4, we construct subsets 𝜔 of ℝ𝑛 which are 𝛾-thick and such that Leb(ℝ𝑛 ⧵ 𝜔) > 0.
Roughly speaking, when 𝛾 is assumed to be decreasing and satisfying 𝛾(𝑟) → 0 as 𝑟 → 0, these are
complements of Smith-Volterra-Cantor sets associated with the sequence

(
24(𝛾(2−𝑛) − 𝛾(2−𝑛−1))

)
𝑛≥0

(whose definition we recall in definition 17). We refer to proposition 20 for the details.

Let us now apply theorem 4 and theorem 5 to the fractional heat equations.

Example 8. For all positive real number 𝑠 > 0, let us consider the multiplier 𝜌𝑠 ∶ [0,+∞)→ [0,+∞)
defined for all 𝑡 ≥ 0 by 𝜌𝑠(𝑡) = 𝑡𝑠. Let us consider a positive time 𝑇 > 0 and a measurable set 𝜔 ⊂ ℝ𝑛.
As recalled in the beginning of the introduction, the null-controllability properties of the associated
fractional heat equation (𝐸𝜌𝑠 ) are well understood in the high-dissipation regime 𝑠 > 1. We will
therefore only focus on the weak-dissipation regime 𝑠 ∈ (0, 1].

On the one hand, it follows from theorem 4 that in the regime 𝑠 ∈ (0, 1], and when the set 𝜔 is thick
with respect to the function 𝛾𝑠(𝑟) = 𝑐0 exp(−𝑐1𝑟−𝛼𝑠), where 𝑐0, 𝑐1 > 0 and 𝛼 ∈ (0, 1) are parameters,
then the fractional heat equation (𝐸𝜌𝑠 ) is null-controllable from 𝜔 at time 𝑇. As far as we know, this
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is the first positive null-controllability result for the fractional heat equation in the weak-dissipative
regime 𝑠 ∈ (0, 1].
On the other hand, notice that when 𝑠 ∈ (0, 1), the condition (17) of theorem 5 is satisfied with

ℎ𝑟 = 𝑟2∕(1−𝑠) for the above multiplier 𝜌𝑠. As a consequence, still in the regime 𝑠 ∈ (0, 1), it follows
from theorem 5 that if the fractional heat equation (𝐸𝜌𝑠 ) is null-controllable from 𝜔 at time 𝑇, then
there exist some positive constants 𝑐0, 𝑐1 > 0 such that 𝜔 is thick with respect to the function 𝛾𝑠(𝑟) =
𝑐0 exp(−𝑐1𝑟−2𝑠∕(1−𝑠)). Notice that we do not consider the critical case 𝑠 = 1, whose understanding
remains an open problem.

Remark 9. Let us consider the fractional heat equation associated to the Fourier multiplier 𝜌𝑠(𝑡) = 𝑡𝑠
as above, with 𝑠 ≤ 1. In dimension one, one popular way to study the null-controllability of PDEs is
themoment method. The is the strategy employed by Micu and Zuazua [22], using shaped controls,
i.e., controls of the form 𝑢(𝑡)ℎ(𝑥).
Our results underline the difference between shaped controls and internal controls (the kind of

controls we are considering). Indeed, example 8 show that if 𝜔 is sufficiently thick, the fractional
heat equation is null controllable with internal controls; but if we consider shaped controls, then
null-controllability never holds, whatever the profile ℎ is [22, Section 5] (see also [23, Appendix]).

2. Sufficient condition

This section is devoted to the proof of theorem4, which states that given a function 𝜌 ∶ [0,+∞)→ ℂ
such that Re 𝜌 is a continuous non-negative function such that lim+∞ Re 𝜌 = +∞, the parabolic
equation (𝐸𝜌) is null-controllable from any set 𝜔 ⊂ ℝ𝑛 being thick with respect to the density
𝛾𝜌 ∶ (0, 𝑟0]→ (0, 1] defined by eq. (1), and in any positive time 𝑇 > 0.
By the Hilbert Uniqueness Method (see, e.g., [9, Theorem 2.44]), the null-controllability of the

parabolic equation (𝐸𝜌) is equivalent to the observability of the heat-like semigroup (e−𝑡𝜌(|𝐷𝑥|))𝑡≥0,
that we recall in the following definition.

Definition 10. Let 𝑇 > 0, and let 𝜔 ⊂ ℝ𝑛 be measurable. The semigroup (e−𝑡𝜌(|𝐷𝑥|))𝑡≥0 is said to
be observable from the set 𝜔 in time 𝑇 if there exists a positive constant 𝐶𝜔,𝑇 > 0 such that for all
𝑔 ∈ 𝐿2(ℝ𝑛),

‖e−𝑇𝜌(|𝐷𝑥|)𝑔‖2𝐿2(ℝ𝑛) ≤ 𝐶𝜔,𝑇 ∫
𝑇

0
‖e−𝑡𝜌(|𝐷𝑥|)𝑔‖2𝐿2(𝜔) d𝑡.

Wewill prove that the heat-like semigroup (e−𝑡𝜌(|𝐷𝑥|))𝑡≥0 is indeed observable, with an upper bound
on the observability constant. This will imply that the heat-like equation (𝐸𝜌) is null-controllable.

Theorem 11. Let 𝑐0 ∈ (0, 1), 𝑐1 > 0, 𝛼 ∈ (0, 1) and let 𝛾𝜌 be defined by eq. (1). Let 𝜔 ⊂ ℝ𝑛 be 𝛾𝜌-thick.
There exists a positive constant 𝐶 > 0 such that for all 𝑇 > 0 and 𝑔 ∈ 𝐿2(ℝ𝑛),

‖e−𝑇𝜌(|𝐷𝑥|)𝑔‖2𝐿2(ℝ𝑛) ≤ 𝐶 exp ( 𝐶
𝑇𝛼∕(1−𝛼)

) ∫
𝑇

0
‖e−𝑡𝜌(|𝐷𝑥|)𝑔‖2𝐿2(𝜔) d𝑡,

where 𝛼 ∈ (0, 1) is the parameter appearing in the definition of the function 𝛾𝜌.

The rest of this section is devoted to the proof of theorem 11. This will be done in two steps: first
proving a spectral estimate reminiscent of Jerison and Lebeau’s spectral inequality [15, Theorem 14.6]
or Logvinenko-Sereda-Kovrijkine estimate [18], and second using Lebeau and Robbiano’s method, as
stated in the following theorem proven by Beauchard and Pravda-Starov.

Theorem 12 (Theorem 2.1 in [5]). Let 𝜔 be a measurable subset ofℝ𝑛 with positive Lebesgue measure,
(𝜋𝑘)𝑘≥1 be a family of orthogonal projections defined on 𝐿2(ℝ𝑛) and (𝑒𝑡𝐴)𝑡≥0 be a contraction semigroup
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on 𝐿2(ℝ𝑛). Assume that there exist 𝑐1, 𝑐2, 𝑎, 𝑏, 𝑡0, 𝑚 > 0 some positive constants with 𝑎 < 𝑏 such that
the following spectral inequality

∀𝑔 ∈ 𝐿2(ℝ𝑛),∀𝑘 ≥ 1, ‖𝜋𝑘𝑔‖𝐿2(ℝ𝑛) ≤ 𝑒𝑐1𝑘𝑎‖𝜋𝑘𝑔‖𝐿2(𝜔),
and the following dissipation estimate

∀𝑔 ∈ 𝐿2(ℝ𝑛),∀𝑘 ≥ 1,∀0 < 𝑡 < 𝑡0, ‖(1 − 𝜋𝑘)(𝑒𝑡𝐴𝑔)‖𝐿2(ℝ𝑛) ≤
1
𝑐2
𝑒−𝑐2𝑡𝑚𝑘𝑏‖𝑔‖𝐿2(ℝ𝑛),

hold. Then, there exists a positive constant 𝐶 > 1 such that the following observability estimate holds

∀𝑇 > 0,∀𝑔 ∈ 𝐿2(ℝ𝑛), ‖𝑒𝑇𝐴𝑔‖2𝐿2(ℝ𝑛) ≤ 𝐶 exp ( 𝐶

𝑇
𝑎𝑚
𝑏−𝑎

) ∫
𝑇

0
‖𝑒𝑡𝐴𝑔‖2𝐿2(𝜔) d𝑡.

In the rest of this section, in order to alleviate the text, we will denote the spectral projectors
associated with the operator (Re 𝜌)(|𝐷𝑥|) as follows
(3) 𝜋𝜆,𝜌 = 1(−∞,𝜆]((Re 𝜌)(|𝐷𝑥|)), 𝜆 ≥ 0.
Let us now prove the following spectral estimates.

Proposition 13. Let 𝑐0 ∈ (0, 1), 𝑐1 > 0, 𝛼 ∈ (0, 1) and let 𝛾𝜌 be defined by eq. (1). Let 𝜔 ⊂ ℝ𝑛 be
𝛾𝜌-thick. Then, there exists a positive constant 𝑐 > 0 such that

∀𝜆 > 0,∀𝑔 ∈ 𝐿2(ℝ𝑛), ‖𝜋𝜆,𝜌𝑔‖𝐿2(ℝ𝑛) ≤ 𝑐e𝑐𝜆𝛼‖𝜋𝜆,𝜌𝑔‖𝐿2(𝜔).

Remark 14. The proof of proposition 13 will be based on Kovrikine’s spectral estimate [18, Theorem
3] stating that there exists a universal positive constant 𝐾 > 0 depending only on the dimension 𝑛
such that for all (𝛾, 𝐿)-thick set 𝜔 ⊂ ℝ𝑛, with 𝛾 ∈ (0, 1] and 𝐿 > 0, for all 𝜆 ≥ 0 and 𝑔 ∈ 𝐿2(ℝ𝑛) such
that Supp 𝑔 ⊂ 𝐵(0, 𝜆), we have

(4) ‖𝑔‖𝐿2(ℝ𝑛) ≤
(𝐾
𝛾
)𝐾(1+𝐿𝜆)

‖𝑔‖𝐿2(𝜔).

Proof of proposition 13. Let us consider some 𝜆 > 0 and 𝑔 ∈ 𝐿2(ℝ𝑛) be fixed. Recall that by definition
of thickness with respect to 𝛾𝜌, the set 𝜔 is 𝛾𝜌(𝑟)-thick at every scale 𝑟 ∈ (0, 𝑟0], meaning that the
following estimate holds for every 𝑟 ∈ (0, 𝑟0] and 𝑥 ∈ ℝ𝑛,

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≥ 𝛾(𝑟) Leb(𝐵(𝑥, 𝑟)).
On the other hand, by definition (3) of the spectral projector 𝜋𝜆,𝜌, the function 𝜋𝜆,𝜌𝑔 is supported in
𝐵(0, 𝜌†(𝜆)), where

𝜌†(𝜆) ∶= sup
{
𝜇 ≥ 0 ∶ Re 𝜌(𝜇) ≤ 𝜆

}
.

Notice that 𝜌†(𝜆) is well-defined since lim+∞ Re 𝜌 = +∞ by assumption. We therefore deduce from
the spectral estimate (4) that for all 𝑟 ∈ (0, 𝑟0],

‖𝜋𝜆,𝜌𝑔‖𝐿2(ℝ𝑛) ≤
( 𝐾
𝛾𝜌(𝑟)

)𝐾(1+𝑟𝜌†(𝜆))
‖𝜋𝜆,𝜌𝑔‖𝐿2(𝜔),

where the constant 𝐾 > 0 only depends on the dimension 𝑛. Assume for now that 𝜆 ≥ 𝜆𝜌, where
𝜆𝜌 > 0 is defined so that

∀𝜆 ≥ 𝜆𝜌, 𝜌†(𝜆) ≥ 1∕𝑟0.
Then, by choosing 𝑟 = 1∕𝜌†(𝜆) ∈ (0, 𝑟0] in the above estimate, we obtain that

‖𝜋𝜆,𝜌𝑔‖𝐿2(ℝ𝑛) ≤
( 𝐾
𝛾𝜌(1∕𝜌†(𝜆))

)2𝐾
‖𝜋𝜆,𝜌𝑔‖𝐿2(𝜔).
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Moreover, since the function Re 𝜌 is continuous, it follows from the definition of 𝛾𝜌 and the definition
of 𝜌†(𝜆) that

𝛾𝜌(1∕𝜌†(𝜆)) = 𝑐0 exp(−𝑐1(Re 𝜌)(𝜌†(𝜆))𝛼) = 𝑐0 exp(−𝑐1𝜆𝛼).
As consequence, we obtain the following estimate

‖𝜋𝜆,𝜌𝑔‖𝐿2(ℝ𝑛) ≤
(𝐾
𝑐0

)2𝐾
𝑒2𝑐1𝐾𝜆𝛼‖𝜋𝜆,𝜌𝑔‖𝐿2(𝜔).

For the case 0 < 𝜆 < 𝜆𝜌, we use again Kovrijkine’s estimate to find a 𝐶1 such that for every 𝑔 ∈ 𝐿2(ℝ𝑛),
‖𝜋𝜆,𝜌𝑔‖𝐿2(ℝ𝑛) ≤ 𝐶1‖𝜋𝜆,𝜌𝑔‖𝐿2(𝜔), since 𝜋𝜆,𝜌(𝐿2(ℝ𝑛)) ⊂ 𝜋𝜆𝜌 ,𝜌(𝐿

2(ℝ𝑛)). Therefore, for 𝑐2 = 2𝑐1𝐾 and
𝐶2 = max(𝐶1, (𝐾∕𝑐0)2𝐾), we have

‖𝜋𝜆,𝜌𝑔‖𝐿2(ℝ𝑛) ≤ 𝐶2e𝑐2𝜆
𝛼‖𝜋𝜆,𝜌𝑔‖𝐿2(𝜔).

This ends the proof of proposition 13. □

Proof of theorem 11. Given a positive time 𝑇 > 0 and a set 𝜔 ⊂ ℝ𝑛 being thick with respect to the
function 𝛾𝜌 defined in (1), we are now in position to prove an observability estimate for the semigroup
(e−𝑡𝜌(|𝐷𝑥|))𝑡≥0 from 𝜔 in time 𝑇. First notice from Plancherel’s theorem that the following dissipation
estimates hold for any 𝑡 > 0, 𝑘 ≥ 1 and 𝑔 ∈ 𝐿2(ℝ𝑛),

‖(1 − 𝜋𝑘,𝜌)(e−𝑡𝜌(|𝐷𝑥|)𝑔)‖𝐿2(ℝ𝑛) = ‖(1 − 𝜋𝑘,𝜌)(e−𝑡(Re 𝜌)(|𝐷𝑥|)𝑔)‖𝐿2(ℝ𝑛) ≤ 𝑒−𝑡𝑘‖𝑔‖𝐿2(ℝ𝑛).

On the other hand, it follows from proposition 13 that there exists a positive constant 𝑐 > 0 such that

∀𝑘 ≥ 1,∀𝑔 ∈ 𝐿2(ℝ𝑛), ‖𝜋𝑘,𝜌𝑔‖𝐿2(ℝ𝑛) ≤ 𝑐e𝑐𝜆𝛼‖𝜋𝑘,𝜌𝑔‖𝐿2(𝜔),

where 𝛼 ∈ (0, 1) is the parameter appearing in the definition of the function 𝛾𝜌. Theorem 11 is then a
consequence of theorem 12. □

3. Necessary condition

The aim of this section is to prove theorem 5. To that end, we will use some asymptotics on the
evolution of coherent states [16, Section 4], that we recall here.
Let 𝐾 > 0, and 𝒞 ⊂ ℂ be as in the statement of theorem 5. For 𝜉 = (𝜉𝑖)1≤𝑖≤𝑛 ∈ ℂ𝑛, we will denote

|𝜉| =
(∑

𝑖 |𝜉𝑖|
2)1∕2 (the usual norm) and 𝑁(𝜉) =

(∑
𝑖 𝜉

2
𝑖
)1∕2

with principal value of the square root.
Notice that for 𝜉 ∈ ℝ𝑛, 𝑁(𝜉) = 𝑁(𝜉) = |𝜉|.
In this section, we choose some quantities as follows:
(1) let 𝜆 > 0 large enough (for instance 𝜆 = 4(𝐾 + 1)) and 𝜉0 = (𝜆, 0,… , 0) ∈ ℝ𝑛,
(2) let 𝛿 > 0 small enough such that for every 𝜉 ∈ ℝ𝑛 and 𝑥 ∈ ℝ𝑛, |𝜉 − 𝜉0| < 𝛿 and |𝑥| < 𝛿

implies 𝑁(𝜉 + 𝜉0 + 𝑖𝑥) ∈ 𝒞,
(3) let 𝜒 ∈ 𝐶∞𝑐 (𝐵(0, 𝛿)) such that 0 ≤ 𝜒 ≤ 1 and 𝜒 ≡ 1 on a neighborhood of 0, say 𝐵(0, 𝛿2),
(4) finally, for ℎ small enough we define

(5) 𝜖(ℎ) ∶= 𝑇 sup
|𝜉|<𝛿,|𝑥|<𝛿

ℎ
|||||||||
𝜌 (

𝑁(𝜉 + 𝜉0 + 𝑖𝑥)
ℎ )

|||||||||
,

Under these assumptions, we will state some upper and lower bounds on the following function:

(6) 𝑔ℎ(𝑡, 𝑥) ∶= ∫
ℝ𝑛
𝜒(𝜉 − 𝜉0)e−(𝜉−𝜉0)

2∕2ℎ+i𝑥𝜉∕ℎ−𝑡𝜌(|𝜉|∕ℎ) d𝜉.
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Proposition 15. Under the above assumptions, we have uniformly in 0 ≤ 𝑡 ≤ 𝑇 and |𝑥| small enough

𝑔ℎ(𝑡, 𝑥) = (2𝜋ℎ)𝑛∕2e𝑖𝑥𝜉0∕ℎ−𝑥
2∕2ℎ−𝑡𝜌

(𝑁(𝜉0−𝑖𝑥)
ℎ

)
+𝑂
( 𝜖(ℎ)2

ℎ

)(
1 + 𝑂(ℎ + 𝜖(ℎ))

)
,

in the limit ℎ → 0+.

Proof. With 𝜌𝑡,ℎ(𝜉) ∶= −𝑡𝜌(𝑁(𝜉)) and with the notations of [16, §3.2], 𝑔ℎ(𝑡, 𝑥) = 𝐼𝑡,ℎ,1(𝑥). Then apply
[16, Proposition 3.5] adapted in dimension 𝑛 [16, §4.3]. □

Proposition 16. Let 𝜂 > 0 and𝑁 ∈ ℕ. Under the above assumptions, we have uniformly in 0 ≤ 𝑡 ≤ 𝑇
and |𝑥| > 𝜂

|𝑔ℎ(𝑡, 𝑥)| ≤
𝐶

|𝑥|𝑁 e
−𝑐∕ℎ.

Proof. Apply [16, Proposition 3.7] adapted in dimension 𝑛 [16, §4.3] with 𝜌𝑡,ℎ(𝜉) = −𝑡𝜌(𝑁(𝜉)). Note
that with the notations of this theorem, 𝜖(ℎ)∕ℎ = 𝑜(𝑐∕ℎ). □

With these estimates, we can prove theorem 5.

Proof of theorem 5. Let 𝜖 > 0 as in the statement of theorem 5, and let 𝜖′ > 0 small enough (depending
on 𝜖) to be chosen later.
Step 1: Observability inequality. — As in the proof of theorem 4 (and see [9, Theorem 2.44]), the
exact null-controllability of the system (𝜕𝑡 + 𝜌(|𝐷𝑥|))𝑓 = 1𝜔𝑢 in time 𝑇 is equivalent to the following
observability inequality: for every 𝑔0 ∈ 𝐿2(ℝ), the solution 𝑔 of
(7) 𝜕𝑡𝑔(𝑡, 𝑥) + 𝜌(|𝐷𝑥|)𝑔(𝑡, 𝑥) = 0, 𝑔(0, ⋅) = 𝑔0,
satisfies

(8) ‖𝑔(𝑇, ⋅)‖𝐿2(ℝ𝑛) ≤ 𝐶‖𝑔‖𝐿2((0,𝑇)×𝜔).
Throughout this proof, 𝑐 and 𝐶 denote constants that can change from line to line.

Step 2: Choice of test functions. — We want to find a lower bound on Leb(𝜔 ∩ 𝐵(𝑥, 𝐿)) by testing the
observability inequality on 𝑔ℎ defined in eq. (6). Since the equation (𝐸𝜌) is invariant by translation,
we may assume that 𝑥 = 0. Notice that 𝑔ℎ satisfies

𝑔ℎ(𝑡, 𝑥) = ℎ𝑛 ∫
ℝ𝑛
𝜒(ℎ𝜉 − 𝜉0)e−(ℎ𝜉−𝜉0)

2∕2ℎ+i𝑥𝜉−𝑡𝜌(|𝜉|) d𝜉.

Thus, 𝑔ℎ is a solution to the heat-like equation (7).

Step 3: Lower bound on 𝑔ℎ. — Let 𝑅 ∈ (0, 1) be such that for every 𝐴 > 2𝐾, 𝐵(𝐴,𝐴𝑅) ⊂ 𝒞. According
to Harnack’s inequality [8, Chapter X, Theorem 2.14], if 𝐴 > 2𝐾 and |𝜇| < 𝐴𝑅, we have

Re 𝜌 (𝐴 + 𝜇) ≤
𝐴𝑅 + |𝜇|
𝐴𝑅 − |𝜇| Re 𝜌 (𝐴) .

Hence, if 𝛿′ < 𝑅, for every |𝑧| < 𝛿′ and ℎ > 0 small enough, it follows that

Re 𝜌 (𝜆 + 𝑧
ℎ ) ≤ 𝜆𝑅 + 𝛿′

𝜆𝑅 − 𝛿′ Re 𝜌 (
𝜆
ℎ) .

We choose 𝛿′ such that (𝜆𝑅+𝛿′)∕(𝜆𝑅−𝛿′) < 1+𝜖′. Reducing 𝛿 if necessary, wemay assume that 𝛿 < 𝜂
(the one fromproposition 16) and that for 𝜉, 𝑥 ∈ ℝ𝑛 with |𝜉| < 𝛿 and |𝑥| < 𝛿, |𝑁(𝜉0+𝜉+i𝑥)−𝑁(𝜉0)| <
𝛿′. In this case, we have

Re 𝜌 (
𝑁(𝜉0 + 𝜉 + i𝑥)

ℎ ) ≤ (1 + 𝜖′) Re 𝜌 (
𝑁(𝜉0)
ℎ ) = (1 + 𝜖′) Re 𝜌 (𝜆ℎ) .
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Plugging this into the asymptotic of proposition 15, we deduce that for ℎ small enough

‖𝑔ℎ(𝑇, ⋅)‖2𝐿2(ℝ𝑛) ≥ ‖𝑔ℎ(𝑇, ⋅)‖2𝐿2(|𝑥|<𝛿)

≥ 𝑐ℎ𝑛 ∫
|𝑥|<𝛿

e−𝑥2∕ℎ−2𝑇 Re 𝜌(𝑁(𝜉0+𝜉−i𝑥)∕ℎ)+𝑂(𝜖(ℎ)2∕ℎ) d𝑥

≥ 𝑐ℎ𝑛 ∫
|𝑥|<𝛿

e−𝑥2∕ℎ−2𝑇(1+𝜖′) Re 𝜌(𝜆∕ℎ)+𝑂(𝜖(ℎ)2∕ℎ) d𝑥

≥ 𝑐ℎ3𝑛∕2e−2𝑇(1+𝜖′) Re 𝜌(𝜆∕ℎ)+𝑂(𝜖(ℎ)2∕ℎ).

Since we assumed that |Im 𝜌| ≤ 𝐶 Re 𝜌, we get that 𝜖(ℎ) ≤ ℎ(1 + 𝜖′)(1 + 𝐶)𝑇 Re 𝜌(𝜆∕ℎ) (see the
definition of 𝜖 eq. (5)). We deduce that

‖𝑔ℎ(𝑇, ⋅)‖2𝐿2(ℝ𝑛) ≥ 𝑐ℎ3𝑛∕2e−2𝑇(1+𝜖
′) Re 𝜌(𝜆∕ℎ)

(
1+𝑂(𝜖(ℎ))

)
.

Finally, for ℎ small enough, (1 + 𝜖′)(1 + 𝑂(𝜖(ℎ))) < 1 + 2𝜖′. We get

‖𝑔ℎ(𝑇, ⋅)‖2𝐿2(ℝ𝑛) ≥ 𝑐ℎ3𝑛∕2e−2𝑇(1+2𝜖′) Re 𝜌(𝜆∕ℎ).(9)

Step 4: Upper bound on 𝑔ℎ. — Recall that for ℎ small enough, |𝜉| < 𝛿 and |𝑥| < 𝛿, Re 𝜌(𝑁(𝜉0 + 𝜉 +
i𝑥)∕ℎ) ≥ 0. Hence, the asymptotics stated in proposition 15 imply the upper bound

|𝑔ℎ(𝑡, 𝑥)| ≤ 𝐶ℎ𝑛∕2e−𝑥2∕2ℎ+𝑂(𝜖(ℎ)∕ℎ).

Moreover, according to proposition 16, for every ℎ > 0 small enough and for every 0 < 𝑟 < 𝛿,

‖𝑔ℎ‖2𝐿2((0,𝑇)×𝜔) ≤ ‖𝑔ℎ‖2𝐿2((0,𝑇)×{𝛿<|𝑥|}) + ‖𝑔ℎ‖2𝐿2((0,𝑇)×{𝑟<|𝑥|<𝛿})) + ‖𝑔ℎ‖2𝐿2((0,𝑇)×{|𝑥|<𝑟}∩𝜔)
≤ 𝐶e−𝑐∕ℎ + 𝐶ℎ𝑛e−𝑟2∕ℎ + 𝐶ℎ𝑛 Leb(𝐵(0, 𝑟) ∩ 𝜔).

Reducing 𝛿 if necessary, we may assume that 𝑟2 < 𝑐, and we can drop the first term of the right-hand
side:

‖𝑔ℎ‖2𝐿2((0,𝑇)×𝜔) ≤ 𝐶ℎ𝑛e−𝑟2∕ℎ + 𝐶ℎ𝑛 Leb(𝐵(0, 𝑟) ∩ 𝜔).(10)

Step 5: Conclusion. — If the observability inequality (8) holds, according to eqs. (9) and (10), there
exist 𝑐, 𝐶 > 0 such that for any 𝑟 > 0 and ℎ > 0 small enough:

𝑐ℎ𝑛∕2e−2𝑇(1+2𝜖′) Re 𝜌(𝜆∕ℎ) ≤ 𝐶e−𝑟2∕ℎ + 𝐶 Leb(𝐵(0, 𝑟) ∩ 𝜔).

Since 𝜌(𝜉) = 𝑜(𝜉) and
√
ℎ𝑟2𝑇(1 + 𝜖) Re 𝜌(𝜆∕ℎ𝑟) ≤ 𝑟, we get that ℎ𝑟 → 0 as 𝑟 → 0. Hence, for 𝑟 small

enough, we can apply the previous inequality with ℎ = ℎ𝑟, which gives us

𝑐ℎ𝑛∕2𝑟 e−2𝑇(1+2𝜖′) Re 𝜌(𝜆∕ℎ𝑟) ≤ 𝐶e−𝑟2∕ℎ𝑟 + 𝐶 Leb(𝐵(0, 𝑟) ∩ 𝜔)
≤ 𝐶e−2𝑇(1+𝜖) Re 𝜌(𝜆∕ℎ𝑟) + 𝐶 Leb(𝐵(0, 𝑟) ∩ 𝜔).

This gives us

Leb(𝐵(0, 𝑟) ∩ 𝜔) ≥ 𝑐ℎ𝑛∕2𝑟 e−2𝑇(1+2𝜖′) Re 𝜌(𝜆∕ℎ𝑟) − 𝑐e−2𝑇(1+𝜖) Re 𝜌(𝜆∕ℎ𝑟)

Now, since ln(𝜉) = 𝑜(Re 𝜌(𝜉)), we get ℎ𝑛∕2𝑟 ≥ 𝐶e−2𝑇𝜖′ Re 𝜌(𝜆∕ℎ𝑟). For small enough ℎ𝑟 (equivalently,
small enough 𝑟 > 0), this gives us

Leb(𝐵(0, 𝑟) ∩ 𝜔) ≥ 𝑐e−2𝑇(1+3𝜖′) Re 𝜌(𝜆∕ℎ𝑟) − 𝑐e−2𝑇(1+𝜖) Re 𝜌(𝜆∕ℎ𝑟).
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If we choose 𝜖′ small enough so that 3𝜖′ < 𝜖, the second term of the right-hand side is negligible, and
we get for ℎ small enough

Leb(𝐵(0, 𝑟) ∩ 𝜔) ≥ 𝑐e−2𝑇(1+3𝜖′) Re 𝜌(𝜆∕ℎ𝑟)

≥ 𝑐e−2𝑇(1+𝜖) Re 𝜌(𝜆∕ℎ𝑟).
Dividing this inequality by Leb(𝐵(𝑥, 𝑟)) gives the claimed inequality. □

4. Examples of 𝛾-thick sets
In this section, we construct non-trivial sets that are 𝛾-thick for any given function 𝛾∶ (0, 𝑟0]→

[0, 1]. This construction is based on Smith-Volterra-Cantor sets.
4.1. Thickness of Smith-Volterra-Cantor sets. Let us first recall the definition of Smith-Volterra-
Cantor sets.
Definition 17 (Smith-Volterra-Cantor sets). Let (𝜏𝑛)𝑛∈ℕ be a sequence of real numbers such that
0 < 𝜏𝑛 < 1. For 𝑛 ∈ ℕ, let 𝐾𝑛 be the closed subset of [0, 1], finite union of closed disjoint intervals,
defined inductively by the following procedure.

∙ 𝐾0 ∶= [0, 1].
∙ If 𝐾𝑛 =

⋃
𝑘 𝐼𝑛𝑘, where the (𝐼𝑛𝑘)𝑘 are disjoint closed intervals, remove from 𝐼𝑛𝑘 the middle

part of size 𝜏𝑛 Leb(𝐼𝑛𝑘) and call the resulting sets1 𝐼′𝑛𝑘. Then set 𝐾𝑛+1 ∶=
⋃

𝑘 𝐼
′
𝑛𝑘.

Let 𝐾 ∶=⋂
𝑛∈ℕ 𝐾𝑛. The set 𝐾 is the Smith-Volterra-Cantor set associated to the sequence (𝜏𝑛)𝑛.

At each step in the construction of a Smith-Volterra-Cantor set, we remove a subset of measure
(1 − 𝜏𝑛) Leb(𝐾𝑛) from 𝐾𝑛 (see definition 17), hence:
Proposition 18. With the notations of definition 17, Leb(𝐾𝑛) = ∏𝑛−1

𝑘=0(1 − 𝜏𝑛) and Leb(𝐾) =
∏+∞

𝑛=0(1 − 𝜏𝑛). In particular, Leb(𝐾) > 0 if and only if∑𝑛 𝜏𝑛 < +∞.
Our first result is some upper and lower bounds on the thickness of the complement of Smith-

Volterra-Cantor sets.
Proposition 19. Let (𝜏𝑛)𝑛 ∈ (0, 1)ℕ. Assume that∑𝑛 𝜏𝑛 < +∞. Let𝐾 be the associated Smith-Volterra-
Cantor set and 𝜔 ∶= ℝ ⧵ 𝐾. There exist 𝑐 > 0, 𝐶 > 0 and 𝑟1 > 0 such that for every 0 < 𝑟 < 𝑟1,

1
24

∑

𝑘≥log2(3 Leb(𝐾)∕𝑟)

𝜏𝑘 ≤ inf
𝑥∈ℝ

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))
Leb(𝐵(𝑥, 𝑟))

≤ 6
∑

𝑘≥log2(Leb(𝐾)∕4𝑟)
𝜏𝑘,

where log2 is the base 2 logarithm log2(𝑥) = ln(𝑥)∕ ln(2).
With a more careful analysis in the proof below, it seems we could improve this inequality by

replacing the log2(3 Leb(𝐾)∕𝑟) by log2(𝜅 Leb(𝐾)∕𝑟) with some 𝜅 < 3. We do not know what the
optimal 𝜅 is. We do not pursue this because we do not need such a sharp estimate. In the same spirit,
the factors 1∕24 and 6 are not optimal either.
Proof. Remark that we only need to estimate Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) for 𝑥 ∈ [0, 1]. Indeed, if for instance
𝑥 > 1, 𝜔 ∩ 𝐵(𝑥, 𝑟) contains [𝑥, 𝑥 + 𝑟], hence Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))∕ Leb(𝐵(𝑥, 𝑟)) ∈ [1∕2, 1].
Step 1: Notations and preliminary computations. — In this proof, we denote by 𝐼𝑛𝑘 the intervals that
appears in the construction of 𝐾, as defined in definition 17. We denote the length of 𝐼𝑛𝑘 (which does
not depend on 𝑘) by 𝓁𝑛. We have

𝓁𝑛 =
1 − 𝜏𝑛−1

2 𝓁𝑛−1.

1I.e., if 𝐼𝑛𝑘 = [𝑎𝑛𝑘 , 𝑏𝑛𝑘], set 𝑏′𝑛𝑘 ∶= (𝑎𝑛𝑘(1 + 𝜏𝑛) + 𝑏𝑛𝑘(1 − 𝜏𝑛))∕2 and 𝑎′𝑛𝑘 = (𝑎𝑛𝑘(1 − 𝜏𝑛) + 𝑏𝑛𝑘(1 + 𝜏𝑛))∕2, and finally
𝐼′𝑛𝑘 ∶= [𝑎𝑛𝑘 , 𝑏′𝑛𝑘] ∪ [𝑎

′
𝑛𝑘 , 𝑏𝑛𝑘].
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Notice that
Leb(𝐼𝑛𝑘 ∩ 𝜔) = Leb(𝐼𝑛𝑘) − Leb(𝐼𝑛𝑘 ∩ 𝐾) = 𝓁𝑛

(
1 −

∏

𝑘≥𝑛
(1 − 𝜏𝑘)

)
.

In addition, we can estimate the right-hand side in the following way

1 −
∏

𝑘≥𝑛
(1 − 𝜏𝑘) = 1 − exp

( ∑

𝑘≥𝑛
ln(1 − 𝜏𝑘)

)

= 1 − exp
( ∑

𝑘≥𝑛
−𝜏𝑘(1 + 𝑜𝑘(1))

)
(because 𝜏𝑘 → 0)

= 1 − exp
(
− (1 + 𝑜𝑛(1))

∑

𝑘≥𝑛
𝜏𝑘
)

(because
∑ 𝜏𝑘 < +∞)

= 1 −
(
1 − (1 + 𝑜𝑛(1))

∑

𝑘≥𝑛
𝜏𝑘
)

(because
∑
𝑘≥𝑛

𝜏𝑘 ,,,,,→𝑛→∞
0)

= (1 + 𝑜𝑛(1))
∑

𝑘≥𝑛
𝜏𝑘.

Finally, multiplying by 𝓁𝑛,
(11) Leb(𝐼𝑛𝑘 ∩ 𝜔) = (1 + 𝑜𝑛(1))𝓁𝑛

∑

𝑘≥𝑛
𝜏𝑘.

Step 2: Lower bound when 𝑟 is comparable to 𝓁𝑛. — Let 𝑟 > 0 and 𝑛 ∈ ℕ be such that 2𝓁𝑛 ≤ 𝑟 ≤ 6𝓁𝑛.
Let 𝑥 ∈ [0, 1].
If 𝜔 ∩ 𝐵(𝑥, 𝑟) contains an interval of length ≥ 𝓁𝑛∕2, Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≥ 𝓁𝑛∕2.
If that is not the case, then, distance(𝑥, 𝐾𝑛) < 𝓁𝑛∕4. Since 𝑟 ≥ 2𝓁𝑛, this implies that 𝐵(𝑥, 𝑟)

contains some 𝐼𝑛𝑘. Hence, according to eq. (11),
Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≥ Leb(𝜔 ∩ 𝐼𝑛𝑘) = (1 + 𝑜𝑛(1))𝓁𝑛

∑

𝑘≥𝑛
𝜏𝑘.

Putting the two cases together, and assuming that 𝑛 is large enough:

inf
𝑥∈ℝ

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))
Leb(𝐵(𝑥, 𝑟))

≥ 𝓁𝑛
2𝑟 min

(
(1 + 𝑜𝑛(1))

∑

𝑘≥𝑛
𝜏𝑘,

1
2
)
≥ 𝓁𝑛
4𝑟

∑

𝑘≥𝑛
𝜏𝑘.

Since 𝑟 ≤ 6𝓁𝑛,

(12) inf
𝑥∈ℝ

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))
Leb(𝐵(𝑥, 𝑟))

≥ 1
24

∑

𝑘≥𝑛
𝜏𝑘,

this inequality being valid whenever 𝑛 is large enough and when 2𝓁𝑛 ≤ 𝑟 ≤ 6𝓁𝑛.
Step 3: Upper bound when 𝑟 is comparable to 𝓁𝑛. — Let 𝑟 > 0 and 𝑛 ∈ ℕ be such that 𝓁𝑛∕3 ≤ 2𝑟 ≤ 𝓁𝑛.
Let 𝑥 ∈ [0, 1] in the middle of a 𝐼𝑛𝑘, so that 𝐵(𝑥,𝓁𝑛∕2) = 𝐼𝑛𝑘. Then 𝐵(𝑥, 𝑟) ⊂ 𝐼𝑛𝑘, and according to
eq. (11),

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≤ Leb(𝐼𝑛𝑘 ∩ 𝜔) = (1 + 𝑜𝑛(1))𝓁𝑛
∑

𝑘≥𝑛
𝜏𝑘.

Since, 𝓁𝑛∕3 ≤ 2𝑟, and assuming 𝑛 is large enough

(13) inf
𝑥∈ℝ

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))
Leb(𝐵(𝑥, 𝑟))

≤ (1 + 𝑜𝑛(1))
𝓁𝑛
2𝑟

∑

𝑘≥𝑛
𝜏𝑘 ≤ 6

∑

𝑘≥𝑛
𝜏𝑘,

this inequality being valid whenever 𝑛 is large enough and when 𝓁𝑛∕3 ≤ 2𝑟 ≤ 𝓁𝑛.
Step 4: Solving the inequality 𝑎𝓁𝑛 ≤ 𝑟 ≤ 𝑏𝓁𝑛. — Let 𝑟 > 0 and 0 < 𝜅 < 1. Set 𝑛(𝑟) ∶=
⌈log2(Leb(𝐾)∕𝑟)⌉, where ⌈⋅⌉ is the ceiling function. We aim to prove that for 𝑟 small enough, 𝜅𝓁𝑛(𝑟) ≤
𝑟 ≤ 2𝓁𝑛(𝑟).
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According to the definition of 𝐼𝑛𝑘, 𝓁𝑛 = 2−𝑛∏𝑛−1
𝑘=0(1−𝜏𝑘). Recall that Leb(𝐾) =

∏+∞
𝑘=0(1−𝜏𝑘) > 0.

Define 𝑞𝑛 by Leb(𝐾)𝑞𝑛 =
∏𝑛−1

𝑘=0(1 − 𝜏𝑘), i.e., 𝑞𝑛 =
(∏

𝑘≥𝑛(1 − 𝜏𝑘)
)−1

. Then 𝑞𝑛 > 1 and 𝑞𝑛 → 1 as
𝑛 → +∞. With this notation, we have the equivalences

𝜅𝓁𝑛 ≤ 𝑟 ≤ 2𝓁𝑛 ⇔ 2−𝑛𝜅 Leb(𝐾)𝑞𝑛 ≤ 𝑟 ≤ 21−𝑛 Leb(𝐾)𝑞𝑛
⇔ −𝑛 + log2(𝜅 Leb(𝐾)𝑞𝑛) ≤ log2(𝑟) ≤ 1 − 𝑛 + log2(Leb(𝐾)𝑞𝑛)

⇔ log2
(Leb(𝐾)

𝑟
)
+ log2(𝜅) + log2(𝑞𝑛) ≤ 𝑛 ≤ log2

(Leb(𝐾)
𝑟

)
+ 1 + log2(𝑞𝑛). (14)

According to the definition of the ceiling function,

log2
(Leb(𝐾)

𝑟
)
≤ 𝑛(𝑟) < log2

(Leb(𝐾)
𝑟

)
+ 1.

Since log2(𝜅) < 0, log2(𝑞𝑛) > 0 and 𝑞𝑛 → 1, the inequalities on the right-hand side of eq. (14) are
satisfied for 𝑛 = 𝑛(𝑟) and small enough 𝑟 > 0. Hence, for 𝑟 small enough, 𝜅𝓁𝑛(𝑟) ≤ 𝑟 ≤ 2𝓁𝑛(𝑟), as
claimed.

Step 5: Conclusion. — Applying the previous step with 𝜅 = 2∕3, and replacing 𝑟 by 𝑟∕3, we see that
lower bound (12) holds for 𝑛 =

⌈
log2

( 3 Leb(𝐾)
𝑟

)⌉
when 𝑟 is small enough. Hence, the lower-bound

stated in proposition 19 holds.
Applying step 4 with 𝜅 = 2∕3 and 𝑟 replaced by 4𝑟, we get that the upper bound (13) holds with

𝑛 =
⌈
log2

(Leb(𝐾)
4𝑟

)⌉
and 𝑟 small enough, which gives the stated upper bound. □

4.2. Construction of 𝛾-thick sets. Let 𝛾∶ (0, 𝑟0]→ [0, 1] be such that 𝛾(𝑟)→ 0 as 𝑟 → 0.2 Let us
explain how we can use proposition 19 to construct a set that is thick with respect to the function 𝛾, or
more precisely 𝛾|(0,𝑟1] for some small enough 𝑟1 (this does not matter, because considering a 𝛾-thick
set or a 𝛾|(0,𝑟1]-thick set is the same as far as our theorems are concerned).
First, we prove that it is sufficient to treat the case where 𝛾 is increasing. Indeed, set 𝛾1(𝑟) ∶=

sup(0,𝑟] 𝛾, i.e., the smallest non-decreasing function that is larger or equal than 𝛾. Finally, we set
𝛾2 ∶= 𝛾1 + 𝜙 where 𝜙 is a small nonnegative increasing function such that lim𝑟→0 𝜙(𝑟) = 0. This
function 𝛾2 is such that 𝛾2(𝑟)→ 0 as 𝑟 → 0, 𝛾2 is increasing and 𝛾2(𝑟) ≥ 𝛾(𝑟). Hence, a set that is thick
with respect to 𝛾2 will also be thick with respect to 𝛾. From now on, we assume that 𝛾 is increasing.

We are looking for a sequence (𝜏𝑘)𝑘 ∈ (0, 1)ℕ such that∑ 𝜏𝑘 < +∞ and such that the left-hand side
of the thickness estimate in proposition 19 is larger than 𝛾(𝑟), at least for small enough 𝑟. Moreover,
if 𝐾 is the Smith-Volterra-Cantor set associated to (𝜏𝑘)𝑘 we will look for such a sequence such that
Leb(𝐾) = 1∕3. In other words, we want 0 < 𝜏𝑘 < 1 and:

Leb(𝐾) =
+∞∏

𝑘=0
(1 − 𝜏𝑘) =

1
3 ,(15)

∃𝑟0 > 0, ∀0 < 𝑟 ≤ 𝑟0, 𝛾(𝑟) ≤
1
24

∑

𝑘≥log2(1∕𝑟)

𝜏𝑘.(16)

The thickness condition (16) imposes
∑

𝑘≥𝑛 𝜏𝑘 ≥ 24 sup[2−𝑛−1,2−𝑛) 𝛾 = 24𝛾(2−𝑛) since 𝛾 is increasing.
Motivated by this, we set 𝜏𝑛 ∶= 24(𝛾(2−𝑛) − 𝛾(2−𝑛−1)) when it is defined, i.e., for 𝑛 ≥ 𝑛0 ∶=
⌈log2(1∕𝑟0)⌉. Notice that since 𝛾 is increasing, we do have 𝜏𝑘 > 0. For 𝑛 ≥ 𝑛0, we have

∑
𝑘≥𝑛 𝜏𝑘 =

2The case 𝛾(𝑟) → 0 as 𝑟 → 0 is the interesting one. In fact, we claim that if lim sup𝑟→0 𝛾(𝑟) > 0 and 𝜔 ⊂ ℝ𝑛 is thick
with respect to 𝛾, then ℝ𝑛 ⧵ 𝜔 is negligible. Indeed, in this case, the definition of 𝛾-thickness tells us that for all 𝑥 ∈ ℝ𝑛 ,
lim sup𝑟→0 Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))∕ Leb(𝐵(𝑥, 𝑟)) > 0. On the other hand, Lebesgue’s differentiation theorem applied to 1𝜔 implies
that for almost every 𝑥 ∉ 𝜔, lim𝑟→0 Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))∕ Leb(𝐵(𝑥, 𝑟)) = 0, which is only possible if ℝ𝑛 ⧵ 𝜔 is negligible.
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24(𝛾(2−𝑛)−lim0 𝛾) = 24𝛾(2−𝑛) < +∞. For 𝑛 < 𝑛0, we choose some arbitrary value for 𝜏𝑛, for instance
𝜏𝑛 = 1∕2. This sequence (𝜏𝑘) satisfies the thickness condition (16) by construction.

Of course, we might not have the measure condition (15), and for some 𝑘, we might not even have
𝜏𝑘 < 1. But we can tweak the sequence (𝜏𝑘)𝑘 to ensure these properties. Notice that if we change
a finite number of 𝜏𝑘, the thickness condition (16) still holds (with a smaller 𝑟0). There are a finite
number of 𝜏𝑘 that are larger or equal than 1 (if any), andwe can set them to, e.g., 1∕2. Next, if Leb(𝐾) >
1∕3, increase 𝜏0 to reduce Leb(𝐾). And if Leb(𝐾) < 1∕3, choose 𝑁 so that

∏+∞
𝑘=𝑁+1(1 − 𝜏𝑘) > 1∕3,

and decrease 𝜏0,… , 𝜏𝑁 to increase Leb(𝐾).
Let us end this construction by noticing that it is almost optimal in the following sense: according

to the right-hand side of the thickness estimate in proposition 19, the set 𝜔 = ℝ ⧵ 𝐾 is such that for 𝑟
small enough,

inf
𝑥∈ℝ

Leb(𝐵(𝑥, 𝑟) ∩ 𝜔)
Leb(𝐵(𝑥, 𝑟)) ≤ 6

∑

𝑘≥log2(1∕12𝑟)
𝜏𝑘

= 6 × 24𝛾
(
2−⌈log2(1∕12𝑟)⌉

)

≤ 144𝛾(12𝑟).
We summarize this construction in the following proposition:

Proposition 20. Let 𝛾∶ (0, 𝑟0]→ [0, 1] be such that 𝛾(𝑟)→ 0 as 𝑟 → 0. There exists a set 𝜔 ⊂ ℝ such
that Leb(ℝ ⧵ 𝜔) > 0 and such that for every 𝑟 small enough,

𝛾(𝑟) ≤ inf
𝑥∈ℝ

Leb(𝐵(𝑥, 𝑟) ∩ 𝜔)
Leb(𝐵(𝑥, 𝑟))

.

Moreover, if 𝛾 is increasing, we can choose𝜔 = ℝ⧵𝐾, where𝐾 is the Smith-Volterra-Cantor set associated
to a sequence (𝜏𝑛)𝑛 such that for 𝑛 large enough, 𝜏𝑛 = 24(𝛾(2−𝑛) − 𝛾(2−𝑛−1)), in which case, for small
enough 𝑟,

inf
𝑥∈ℝ

Leb(𝐵(𝑥, 𝑟) ∩ 𝜔)
Leb(𝐵(𝑥, 𝑟))

≤ 144𝛾(12𝑟).

This proposition constructs 𝛾-thick sets only in dimension 1. In higher dimension, we can prove
that if 𝜔1 ⊂ ℝ is 𝛾-thick, then 𝜔 ∶= 𝜔1 ×ℝ𝑛−1 is thick with respect to 𝑎𝑛𝛾(𝑏𝑛⋅), for some universal
constants 𝑎𝑛, 𝑏𝑛 that depends only on 𝑛. Indeed, let 𝑏𝑛 > 0 such that [−𝑏𝑛, 𝑏𝑛]𝑛 ⊂ 𝐵(0, 1). Then,
Leb(𝐵(𝑥, 𝑟) ∩ 𝜔) ≥ Leb([𝑥 − 𝑏𝑛𝑟, 𝑥 + 𝑏𝑛𝑟]𝑛 ∩ 𝜔) ([𝑥 − 𝑏𝑛𝑟, 𝑥 + 𝑏𝑛𝑟]𝑛 ⊂ 𝐵(𝑥, 𝑟))

≥ Leb([𝑥 − 𝑏𝑛𝑟, 𝑥 + 𝑏𝑛𝑟] ∩ 𝜔1)(2𝑏𝑛𝑟)𝑛−1 ((∏𝑖 𝐴𝑖) ∩ (
∏

𝑖 𝐵𝑖) =
∏

𝑖(𝐴𝑖 ∩ 𝐵𝑖))
≥ 𝛾(𝑏𝑛𝑟)(2𝑏𝑛𝑟)𝑛 (𝜔1 is thick with respect to 𝛾).

Thus,
Leb(𝐵(𝑥, 𝑟) ∩ 𝜔)
Leb(𝐵(𝑥, 𝑟)

≥ (2𝑏𝑛)𝑛
Leb(𝐵(0, 1))

𝛾(𝑏𝑛𝑟).

Appendix A. Heat-like equation on the torus

The previous results are stated for equations posed on the whole space. But we can adapt these
results when the equation is posed on the torus 𝕋𝑛 ∶= (ℝ∕2𝜋ℤ)𝑛. The equation is written in the
same way:

(𝐸𝕋𝜌 ) {𝜕𝑡𝑓(𝑡, 𝑥) + 𝜌(|𝐷𝑥|)𝑓(𝑡, 𝑥) = 1𝜔𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ ℝ∗
+ × 𝕋𝑛,

𝑓(0, ⋅) = 𝑓0 ∈ 𝐿2(𝕋𝑛),

where 𝜌(|𝐷𝑥|) is again defined with the functional calculus, that is to say, for 𝑓 ∈ 𝐿2(𝕋𝑛) and 𝑘 ∈ ℤ𝑛,
denoting the 𝑘-th Fourier coefficient of 𝑓 by 𝑐𝑘(𝑓), we define 𝜌(|𝐷𝑥|)𝑓 by 𝑐𝑘(𝜌(|𝐷𝑥|)𝑓) = 𝜌(|𝑘|)𝑐𝑘(𝑓).
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The strongly dissipative case (e.g. 𝜌(𝜉) = 𝜉𝑠 with 𝑠 > 1) for these equations on bounded domains
or compact manifold is well known, by combining Burq and Moyano’s estimate [7, Theorem 1]
and Lebeau and Robbiano’s method, as stated by Duyckaerts and Miller [10, Theorem 6.1] (see also
references in those two articles).
For the weakly dissipative case, we have the following straightforward adaptations of definition 3

and theorems 4 and 5.

Definition 21. Given some 𝑟0 > 0 and a function 𝛾∶ (0, 𝑟0]→ [0, 1], a set 𝜔 ⊂ 𝕋𝑛 is said to be thick
relatively to 𝛾 (or 𝛾-thick) when it is measurable and satisfies that for every 𝑟 ∈ (0, 𝑟0] and 𝑥 ∈ 𝕋𝑛,

Leb(𝜔 ∩ 𝐵(𝑥, 𝑟)) ≥ 𝛾(𝑟) Leb(𝐵(𝑥, 𝑟)).

Theorem 22 (theorem 4 in the torus). Let 𝜌∶ [0,+∞)→ ℂ and 𝛾𝜌 be as in theorem 4, and 𝜔 ⊂ 𝕋𝑛 be
𝛾𝜌-thick. For every 𝑇 > 0, the parabolic equation (𝐸𝕋𝜌 ) is null-controllable from 𝜔 in time 𝑇.

Sketch of the proof. Egidi and Veselić proved a version of Kovrijkine’s estimate for functions defined
on the torus [13, Theorem 2.1]. The proof of theorem 22 is a copy-paste of the one of theorem 4, where
we replace Kovrijkine’s estimate (4) by the aforementionned version on the torus. □

Theorem 23 (theorem 5 on the torus). Let 𝐾 > 0, 𝒞 ⊂ ℂ, 𝜌∶ 𝒞 ∪ℝ+ → ℂ and ℎ𝑟 be as in theorem 5.
Let 𝑇 > 0 and 𝜔 ⊂ 𝕋𝑑 be measurable. Assume that the parabolic equation (𝐸𝕋𝜌 ) is null controllable from
𝜔 in time 𝑇 > 0.
There exists 𝜆 > 0, 𝑟0 > 0 and 𝑐 > 0 such that for every 𝜖 > 0, and for every function 𝑟 ∈ (0, 𝑟0] ↦

ℎ𝑟 ∈ ℝ∗
+ that satisfy

(17) ∀𝑟 ∈ (0, 𝑟0],
√
ℎ𝑟2𝑇(1 + 𝜖) Re 𝜌 ( 𝜆ℎ𝑟

) ≤ 𝑟,

then, there exists 𝑟1 ∈ (0, 𝑟0) such that for every 0 < 𝑟 < 𝑟1, and 𝑥 ∈ ℝ𝑛, we have
Leb(𝜔 ∩ 𝐵(𝑥, 𝑟))
Leb(𝐵(𝑥, 𝑟))

≥ 𝑐𝑟−𝑛 exp (−2𝑇(1 + 𝜖) Re 𝜌 ( 𝜆ℎ𝑟
)) .

Sketch of the proof. Consider 𝑔ℎ as defined by eq. (6) and
𝑔ℎper(𝑡, 𝑥) ∶=

∑

𝑘∈ℤ𝑛
𝑔ℎ(𝑡, 𝑥 + 2𝜋𝑘).

We can check that 𝑔ℎper is a solution of the adjoint equation 𝜕𝑡𝑔(𝑡, 𝑥) +𝜌(|𝐷𝑥|)𝑔(𝑡, 𝑥) = 0 on the torus
(see [16, §4.2]). Moreover, the terms for 𝑘 ≠ 0 are exponentially small. Hence, when estimating the
left-hand side ‖𝑔ℎper(𝑇, ⋅)‖𝐿2 and the right-hand side ‖𝑔ℎper‖𝐿2([0,𝑇]×𝜔) of the observability inequality,
only the term for 𝑘 = 0matters. Thus, we can do all the computations of the proof of theorem 5 with
𝑔ℎper instead of 𝑔ℎ. □

Acknowledgements. The second author thanks Pierre Lissy for interesting discussions on this
topic.
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